1 | /*! |
---|
2 | \file |
---|
3 | \brief Simulation of disturbances in PMSM model, EKF runs with simulated covariances |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | \ingroup PMSM |
---|
7 | ----------------------------------- |
---|
8 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
9 | |
---|
10 | Using IT++ for numerical operations |
---|
11 | ----------------------------------- |
---|
12 | */ |
---|
13 | |
---|
14 | |
---|
15 | #include <stat/libFN.h> |
---|
16 | #include <estim/libKF.h> |
---|
17 | #include <estim/libPF.h> |
---|
18 | #include <estim/ekf_templ.h> |
---|
19 | #include <math/chmat.h> |
---|
20 | |
---|
21 | #include "pmsm.h" |
---|
22 | #include "simulator.h" |
---|
23 | #include "sim_profiles.h" |
---|
24 | |
---|
25 | #include <stat/loggers.h> |
---|
26 | |
---|
27 | using namespace bdm; |
---|
28 | |
---|
29 | class IMpmsm_load : public IMpmsm { |
---|
30 | public: |
---|
31 | IMpmsm_load() :IMpmsm() {}; |
---|
32 | void condition ( const vec &val ) {Mz = val(0);} |
---|
33 | }; |
---|
34 | |
---|
35 | int main() { |
---|
36 | // Kalman filter |
---|
37 | int Ndat = 90000; |
---|
38 | double h = 1e-6; |
---|
39 | int Nsimstep = 125; |
---|
40 | int Npart = 200; |
---|
41 | |
---|
42 | dirfilelog L("exp/mpf_load",1000); |
---|
43 | |
---|
44 | // SET SIMULATOR |
---|
45 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
46 | double Ww = 0.0; |
---|
47 | vec dt ( 2 ); |
---|
48 | vec ut ( 2 ); |
---|
49 | |
---|
50 | IMpmsm_load fxu; |
---|
51 | IMpmsm fxu0; |
---|
52 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
53 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
54 | fxu0.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
55 | OMpmsm hxu; |
---|
56 | |
---|
57 | // ESTIMATORS |
---|
58 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
59 | vec Qdiag0 ( "62 66 454 0.03" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
60 | vec Qdiag ( "6 6 1 0.003" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
61 | vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" |
---|
62 | mat Q =diag( Qdiag ); |
---|
63 | mat R =diag ( Rdiag ); |
---|
64 | EKFfull Efix ( rx,ry,ru ); |
---|
65 | Efix.set_est ( mu0, 1*eye ( 4 ) ); |
---|
66 | Efix.set_parameters ( &fxu0,&hxu,diag(Qdiag0),R); |
---|
67 | |
---|
68 | RV rMz=RV("{Mz }"); |
---|
69 | mlnorm<ldmat> evolMz(rMz,rMz); |
---|
70 | evolMz.set_parameters(mat("1"),vec("0"),ldmat(1.0*vec("1"))); |
---|
71 | evolMz.condition(" 0.0"); |
---|
72 | |
---|
73 | EKFCh_cond Ep ( rx,ry,ru,rMz ); |
---|
74 | Ep.set_est ( mu0, 1*eye ( 4 ) ); |
---|
75 | Ep.set_parameters ( &fxu,&hxu,Q,R); |
---|
76 | |
---|
77 | MPF<EKFCh_cond> M ( rx,rMz,evolMz,evolMz, Npart, Ep ); |
---|
78 | M.set_est(evolMz.posterior()); |
---|
79 | |
---|
80 | //LOG |
---|
81 | int X_log = L.add(rx,"X"); |
---|
82 | int E_log = L.add(rx,"EX"); |
---|
83 | int M_log = L.add(concat(rMz,rx),"MX"); |
---|
84 | L.init(); |
---|
85 | |
---|
86 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
87 | //Number of steps of a simulator for one step of Kalman |
---|
88 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
89 | sim_profile_steps1 ( Ww , true); |
---|
90 | pmsmsim_step ( Ww ); |
---|
91 | }; |
---|
92 | // simulation via deterministic model |
---|
93 | ut ( 0 ) = KalmanObs[4]; |
---|
94 | ut ( 1 ) = KalmanObs[5]; |
---|
95 | |
---|
96 | dt ( 0 ) = KalmanObs[2]; |
---|
97 | dt ( 1 ) = KalmanObs[3]; |
---|
98 | |
---|
99 | //ESTIMATE |
---|
100 | Efix.bayes(concat(dt,ut)); |
---|
101 | // |
---|
102 | M.bayes(concat(dt,ut)); |
---|
103 | |
---|
104 | //LOG |
---|
105 | L.logit(X_log, vec(x,4)); //vec from C-array |
---|
106 | L.logit(E_log, Efix.posterior().mean()); |
---|
107 | L.logit(M_log, M.posterior().mean()); |
---|
108 | |
---|
109 | L.step(); |
---|
110 | } |
---|
111 | |
---|
112 | L.finalize(); |
---|
113 | //L.itsave("sim_var.it"); |
---|
114 | |
---|
115 | |
---|
116 | return 0; |
---|
117 | } |
---|