[220] | 1 | /* |
---|
| 2 | \file |
---|
| 3 | \brief Models for synchronous electric drive using IT++ and BDM |
---|
| 4 | \author Vaclav Smidl. |
---|
| 5 | |
---|
| 6 | ----------------------------------- |
---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
| 8 | |
---|
| 9 | Using IT++ for numerical operations |
---|
| 10 | ----------------------------------- |
---|
| 11 | */ |
---|
| 12 | |
---|
| 13 | #include <itpp/itbase.h> |
---|
| 14 | #include <estim/libKF.h> |
---|
| 15 | #include <estim/libPF.h> |
---|
| 16 | #include <stat/libFN.h> |
---|
| 17 | |
---|
| 18 | #include "pmsm.h" |
---|
| 19 | #include "simulator.h" |
---|
| 20 | #include "sim_profiles.h" |
---|
| 21 | |
---|
| 22 | using namespace itpp; |
---|
| 23 | //!Extended Kalman filter with unknown \c Q |
---|
| 24 | class EKF_unQ : public EKFCh , public BMcond { |
---|
| 25 | public: |
---|
| 26 | //! Default constructor |
---|
| 27 | EKF_unQ ( RV rx, RV ry,RV ru,RV rQ ) :EKFCh ( rx,ry,ru ),BMcond ( rQ ) {}; |
---|
| 28 | void condition ( const vec &Q0 ) { |
---|
| 29 | Q.setD ( Q0,0 ); |
---|
| 30 | //from EKF |
---|
| 31 | preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); |
---|
| 32 | }; |
---|
| 33 | }; |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | int main() { |
---|
| 37 | // Kalman filter |
---|
| 38 | int Ndat = 9000; |
---|
| 39 | double h = 1e-6; |
---|
| 40 | int Nsimstep = 125; |
---|
| 41 | int Npart = 20; |
---|
| 42 | |
---|
| 43 | // internal model |
---|
| 44 | IMpmsm fxu; |
---|
| 45 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
| 46 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
| 47 | // observation model |
---|
| 48 | OMpmsm hxu; |
---|
| 49 | |
---|
| 50 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
| 51 | vec Qdiag ( "1e-6 1e-6 0.001 0.0001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
| 52 | vec Rdiag ( "1e-8 1e-8" ); //var(diff(xth)) = "0.034 0.034" |
---|
| 53 | chmat Q ( Qdiag ); |
---|
| 54 | chmat R ( Rdiag ); |
---|
| 55 | EKFCh KFE ( rx,ry,ru ); |
---|
| 56 | KFE.set_parameters ( &fxu,&hxu,Q,R ); |
---|
| 57 | KFE.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
| 58 | |
---|
| 59 | RV rQ ( "{Q }","4" ); |
---|
| 60 | EKF_unQ KFEp ( rx,ry,ru,rQ ); |
---|
| 61 | KFEp.set_parameters ( &fxu,&hxu,Q,R ); |
---|
| 62 | KFEp.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
| 63 | |
---|
| 64 | mgamma_fix evolQ ( rQ,rQ ); |
---|
| 65 | MPF<EKF_unQ> M ( rx,rQ,evolQ,evolQ,Npart,KFEp ); |
---|
| 66 | // initialize |
---|
| 67 | evolQ.set_parameters ( 10.0, Qdiag, 0.99 ); //sigma = 1/10 mu |
---|
| 68 | evolQ.condition (Qdiag ); //Zdenek default |
---|
| 69 | epdf& pfinit=evolQ._epdf(); |
---|
| 70 | M.set_est ( pfinit ); |
---|
| 71 | evolQ.set_parameters ( 100.0, Qdiag, 0.99 ); //sigma = 1/10 mu |
---|
| 72 | |
---|
| 73 | // |
---|
| 74 | |
---|
| 75 | const epdf& KFEep = KFE._epdf(); |
---|
| 76 | const epdf& Mep = M._epdf(); |
---|
| 77 | |
---|
| 78 | mat Xt=zeros ( Ndat ,4 ); //true state from simulator |
---|
| 79 | mat Dt=zeros ( Ndat,2+2 ); //observation |
---|
| 80 | mat XtE=zeros ( Ndat, 4 ); |
---|
| 81 | mat Qtr=zeros ( Ndat, 4 ); |
---|
| 82 | mat XtM=zeros ( Ndat,4+4 ); //Q + x |
---|
| 83 | |
---|
| 84 | // SET SIMULATOR |
---|
| 85 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
| 86 | vec dt ( 2 ); |
---|
| 87 | vec ut ( 2 ); |
---|
| 88 | vec xt ( 4 ); |
---|
| 89 | vec xtm=zeros(4); |
---|
| 90 | double Ww=0.0; |
---|
| 91 | vec vecW="1 2 4 9 4 2 0 -4 -9 -16 -4 0 0"; |
---|
| 92 | |
---|
| 93 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
| 94 | //Number of steps of a simulator for one step of Kalman |
---|
| 95 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
| 96 | //simulator |
---|
| 97 | sim_profile_vec01t(Ww,vecW); |
---|
| 98 | pmsmsim_step ( Ww ); |
---|
| 99 | }; |
---|
| 100 | ut(0) = KalmanObs[4]; |
---|
| 101 | ut(1) = KalmanObs[5]; |
---|
| 102 | xt = fxu.eval(xtm,ut) + diag(sqrt(Qdiag))*randn(4); |
---|
| 103 | dt = hxu.eval(xt,ut); |
---|
| 104 | xtm = xt; |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | //Variances |
---|
| 108 | if (tK==1000) Qdiag(0)*=10; |
---|
| 109 | if (tK==2000) Qdiag(0)/=10; |
---|
| 110 | if (tK==3000) Qdiag(1)*=10; |
---|
| 111 | if (tK==4000) Qdiag(1)/=10; |
---|
| 112 | if (tK==5000) Qdiag(2)*=10; |
---|
| 113 | if (tK==6000) Qdiag(2)/=10; |
---|
| 114 | if (tK==7000) Qdiag(3)*=10; |
---|
| 115 | if (tK==8000) Qdiag(3)/=10; |
---|
| 116 | |
---|
| 117 | //estimator |
---|
| 118 | KFE.bayes ( concat ( dt,ut ) ); |
---|
| 119 | M.bayes ( concat ( dt,ut ) ); |
---|
| 120 | |
---|
| 121 | Xt.set_row ( tK, xt); //vec from C-array |
---|
| 122 | Dt.set_row ( tK, concat ( dt,ut)); |
---|
| 123 | Qtr.set_row ( tK, Qdiag); |
---|
| 124 | XtE.set_row ( tK,KFEep.mean() ); |
---|
| 125 | XtM.set_row ( tK,Mep.mean() ); |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | it_file fou ( "mpf_test.it" ); |
---|
| 129 | |
---|
| 130 | fou << Name ( "xth" ) << Xt; |
---|
| 131 | fou << Name ( "Dt" ) << Dt; |
---|
| 132 | fou << Name ( "Qtr" ) << Qtr; |
---|
| 133 | fou << Name ( "xthE" ) << XtE; |
---|
| 134 | fou << Name ( "xthM" ) << XtM; |
---|
| 135 | //Exit program: |
---|
| 136 | |
---|
| 137 | return 0; |
---|
| 138 | } |
---|