1 | /*! |
---|
2 | \file |
---|
3 | \brief TR 2525 file for testing Toy Problem of mpf for Covariance Estimation |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | |
---|
14 | #include <itpp/itbase.h> |
---|
15 | #include <estim/libKF.h> |
---|
16 | #include <estim/libPF.h> |
---|
17 | #include <stat/libFN.h> |
---|
18 | |
---|
19 | #include "pmsm.h" |
---|
20 | #include "simulator.h" |
---|
21 | #include "sim_profiles.h" |
---|
22 | |
---|
23 | using namespace itpp; |
---|
24 | //!Extended Kalman filter with unknown \c Q |
---|
25 | class EKF_unQ : public EKFCh , public BMcond { |
---|
26 | public: |
---|
27 | //! Default constructor |
---|
28 | EKF_unQ ( RV rx, RV ry,RV ru,RV rQ ) :EKFCh ( rx,ry,ru ),BMcond ( rQ ) {}; |
---|
29 | void condition ( const vec &Q0 ) { |
---|
30 | Q.setD ( Q0,0 ); |
---|
31 | //from EKF |
---|
32 | preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); |
---|
33 | }; |
---|
34 | }; |
---|
35 | |
---|
36 | |
---|
37 | int main() { |
---|
38 | // Kalman filter |
---|
39 | int Ndat = 9000; |
---|
40 | double h = 1e-6; |
---|
41 | int Nsimstep = 125; |
---|
42 | int Npart = 20; |
---|
43 | |
---|
44 | // internal model |
---|
45 | IMpmsm fxu; |
---|
46 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
47 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
48 | // observation model |
---|
49 | OMpmsm hxu; |
---|
50 | |
---|
51 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
52 | vec Qdiag ( "1e-5 1e-5 0.0001 0.0001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
53 | vec Rdiag ( "1e-8 1e-8" ); //var(diff(xth)) = "0.034 0.034" |
---|
54 | chmat Q ( Qdiag ); |
---|
55 | chmat R ( Rdiag ); |
---|
56 | EKFCh KFE ( rx,ry,ru ); |
---|
57 | KFE.set_parameters ( &fxu,&hxu,Q,R ); |
---|
58 | KFE.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
59 | |
---|
60 | RV rQ ( "{Q }","4" ); |
---|
61 | EKF_unQ KFEp ( rx,ry,ru,rQ ); |
---|
62 | KFEp.set_parameters ( &fxu,&hxu,Q,R ); |
---|
63 | KFEp.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
64 | |
---|
65 | mgamma_fix evolQ ( rQ,rQ ); |
---|
66 | MPF<EKF_unQ> M ( rx,rQ,evolQ,evolQ,Npart,KFEp ); |
---|
67 | // initialize |
---|
68 | evolQ.set_parameters ( 10.0, Qdiag, 1.0 ); //sigma = 1/10 mu |
---|
69 | evolQ.condition (Qdiag ); //Zdenek default |
---|
70 | epdf& pfinit=evolQ._epdf(); |
---|
71 | M.set_est ( pfinit ); |
---|
72 | evolQ.set_parameters ( 100.0, Qdiag, 0.99 ); //sigma = 1/10 mu |
---|
73 | |
---|
74 | // |
---|
75 | |
---|
76 | const epdf& KFEep = KFE._epdf(); |
---|
77 | const epdf& Mep = M._epdf(); |
---|
78 | |
---|
79 | mat Xt=zeros ( Ndat ,4 ); //true state from simulator |
---|
80 | mat Dt=zeros ( Ndat,2+2 ); //observation |
---|
81 | mat XtE=zeros ( Ndat, 4 ); |
---|
82 | mat Qtr=zeros ( Ndat, 4 ); |
---|
83 | mat XtM=zeros ( Ndat,4+4 ); //Q + x |
---|
84 | |
---|
85 | // SET SIMULATOR |
---|
86 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
87 | vec dt ( 2 ); |
---|
88 | vec ut ( 2 ); |
---|
89 | vec xt ( 4 ); |
---|
90 | vec xtm=zeros(4); |
---|
91 | double Ww=0.0; |
---|
92 | vec vecW="1 2 4 9 4 2 0 -4 -9 -16 -4 0 0"; |
---|
93 | |
---|
94 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
95 | //Number of steps of a simulator for one step of Kalman |
---|
96 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
97 | //simulator |
---|
98 | sim_profile_vec01t(Ww,vecW); |
---|
99 | pmsmsim_step ( Ww ); |
---|
100 | }; |
---|
101 | ut(0) = KalmanObs[4]; |
---|
102 | ut(1) = KalmanObs[5]; |
---|
103 | xt = fxu.eval(xtm,ut) + diag(sqrt(Qdiag))*randn(4); |
---|
104 | dt = hxu.eval(xt,ut); |
---|
105 | xtm = xt; |
---|
106 | |
---|
107 | |
---|
108 | //Variances |
---|
109 | if (tK==1000) Qdiag(0)*=10; |
---|
110 | if (tK==2000) Qdiag(0)/=10; |
---|
111 | if (tK==3000) Qdiag(1)*=10; |
---|
112 | if (tK==4000) Qdiag(1)/=10; |
---|
113 | if (tK==5000) Qdiag(2)*=100; |
---|
114 | if (tK==6000) Qdiag(2)/=100; |
---|
115 | if (tK==7000) Qdiag(3)*=100; |
---|
116 | if (tK==8000) Qdiag(3)/=100; |
---|
117 | |
---|
118 | //estimator |
---|
119 | KFE.bayes ( concat ( dt,ut ) ); |
---|
120 | M.bayes ( concat ( dt,ut ) ); |
---|
121 | |
---|
122 | Xt.set_row ( tK, xt); //vec from C-array |
---|
123 | Dt.set_row ( tK, concat ( dt,ut)); |
---|
124 | Qtr.set_row ( tK, Qdiag); |
---|
125 | XtE.set_row ( tK,KFEep.mean() ); |
---|
126 | XtM.set_row ( tK,Mep.mean() ); |
---|
127 | } |
---|
128 | |
---|
129 | it_file fou ( "mpf_test.it" ); |
---|
130 | |
---|
131 | fou << Name ( "xth" ) << Xt; |
---|
132 | fou << Name ( "Dt" ) << Dt; |
---|
133 | fou << Name ( "Qtr" ) << Qtr; |
---|
134 | fou << Name ( "xthE" ) << XtE; |
---|
135 | fou << Name ( "xthM" ) << XtM; |
---|
136 | //Exit program: |
---|
137 | |
---|
138 | return 0; |
---|
139 | } |
---|