[223] | 1 | /*! |
---|
| 2 | \file |
---|
| 3 | \brief TR 2525 file for testing Toy Problem of mpf for Covariance Estimation |
---|
| 4 | \author Vaclav Smidl. |
---|
| 5 | |
---|
| 6 | ----------------------------------- |
---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
| 8 | |
---|
| 9 | Using IT++ for numerical operations |
---|
| 10 | ----------------------------------- |
---|
| 11 | */ |
---|
| 12 | |
---|
| 13 | |
---|
| 14 | #include <itpp/itbase.h> |
---|
| 15 | #include <estim/libKF.h> |
---|
| 16 | #include <estim/libPF.h> |
---|
| 17 | #include <stat/libFN.h> |
---|
| 18 | |
---|
| 19 | #include "pmsm.h" |
---|
| 20 | #include "simulator.h" |
---|
| 21 | #include "sim_profiles.h" |
---|
| 22 | |
---|
| 23 | using namespace itpp; |
---|
| 24 | |
---|
| 25 | //!Extended Kalman filter with unknown \c Q |
---|
| 26 | class EKFCh_cond : public EKFCh , public BMcond { |
---|
| 27 | public: |
---|
| 28 | //! Default constructor |
---|
| 29 | EKFCh_cond ( RV rx, RV ry,RV ru,RV rC ) :EKFCh ( rx,ry,ru ),BMcond ( rC ) {}; |
---|
| 30 | void condition ( const vec &val ) { |
---|
| 31 | pfxu->condition( val ); |
---|
| 32 | }; |
---|
| 33 | }; |
---|
| 34 | |
---|
| 35 | class IMpmsm_delta : public IMpmsm { |
---|
| 36 | protected: |
---|
| 37 | vec ud; |
---|
| 38 | public: |
---|
| 39 | IMpmsm_delta() :IMpmsm(),ud(2) {}; |
---|
| 40 | //! Set mechanical and electrical variables |
---|
| 41 | |
---|
| 42 | void condition(const vec &val){ud = val;} |
---|
| 43 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
| 44 | // last state |
---|
| 45 | double iam = x0 ( 0 ); |
---|
| 46 | double ibm = x0 ( 1 ); |
---|
| 47 | double omm = x0 ( 2 ); |
---|
| 48 | double thm = x0 ( 3 ); |
---|
| 49 | double uam = u0 ( 0 ); |
---|
| 50 | double ubm = u0 ( 1 ); |
---|
| 51 | |
---|
| 52 | vec xk=zeros ( 4 ); |
---|
| 53 | //ia |
---|
| 54 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + (uam+ud(0))*dt/Ls; |
---|
| 55 | //ib |
---|
| 56 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + (ubm+ud(1))*dt/Ls; |
---|
| 57 | //om |
---|
| 58 | xk ( 2 ) = omm + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ) - p/J*dt*Mz; |
---|
| 59 | //th |
---|
| 60 | xk ( 3 ) = thm + omm*dt; // <0..2pi> |
---|
| 61 | if ( xk ( 3 ) >pi ) xk ( 3 )-=2*pi; |
---|
| 62 | if ( xk ( 3 ) <-pi ) xk ( 3 ) +=2*pi; |
---|
| 63 | return xk; |
---|
| 64 | } |
---|
| 65 | |
---|
| 66 | }; |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | int main() { |
---|
| 70 | // Kalman filter |
---|
| 71 | int Ndat = 9000; |
---|
| 72 | double h = 1e-6; |
---|
| 73 | int Nsimstep = 125; |
---|
| 74 | int Npart = 200; |
---|
| 75 | |
---|
| 76 | // internal model |
---|
| 77 | IMpmsm_delta fxu; |
---|
| 78 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
| 79 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
| 80 | // observation model |
---|
| 81 | OMpmsm hxu; |
---|
| 82 | |
---|
| 83 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
| 84 | vec Qdiag ( "0.6 0.6 0.001 0.000001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
| 85 | vec Rdiag ( "1e-8 1e-8" ); //var(diff(xth)) = "0.034 0.034" |
---|
| 86 | chmat Q ( Qdiag ); |
---|
| 87 | chmat R ( Rdiag ); |
---|
| 88 | EKFCh KFE ( rx,ry,ru ); |
---|
| 89 | KFE.set_parameters ( &fxu,&hxu,Q,R ); |
---|
| 90 | KFE.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
| 91 | |
---|
| 92 | RV rUd ( "{ud }", "2" ); |
---|
| 93 | EKFCh_cond KFEp ( rx,ry,ru,rUd ); |
---|
| 94 | KFEp.set_parameters ( &fxu,&hxu,Q,R ); |
---|
| 95 | KFEp.set_est ( mu0, chmat ( zeros ( 4 ) ) ); |
---|
| 96 | |
---|
| 97 | mlnorm<ldmat> evolUd ( rUd,rUd ); |
---|
| 98 | MPF<EKFCh_cond> M ( rx,rUd,evolUd,evolUd,Npart,KFEp ); |
---|
| 99 | // initialize |
---|
| 100 | vec Ud0="0 0"; |
---|
| 101 | evolUd.set_parameters ( eye(2), vec_2(0.0,0.0), ldmat(eye(2)) ); |
---|
| 102 | evolUd.condition (Ud0 ); |
---|
| 103 | epdf& pfinit=evolUd._epdf(); |
---|
| 104 | M.set_est ( pfinit ); |
---|
| 105 | evolUd.set_parameters ( eye(2), vec_2(0.0,0.0), ldmat(0.1*eye(2)) ); |
---|
| 106 | |
---|
| 107 | mat Xt=zeros ( Ndat ,4 ); //true state from simulator |
---|
| 108 | mat Dt=zeros ( Ndat,2+2 ); //observation |
---|
| 109 | mat XtE=zeros ( Ndat, 4 ); |
---|
| 110 | mat Qtr=zeros ( Ndat, 4 ); |
---|
| 111 | mat XtM=zeros ( Ndat,2+4 ); //W + x |
---|
| 112 | |
---|
| 113 | // SET SIMULATOR |
---|
| 114 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
| 115 | vec dt ( 2 ); |
---|
| 116 | vec ut ( 2 ); |
---|
| 117 | vec xt ( 4 ); |
---|
| 118 | vec xtm=zeros(4); |
---|
| 119 | double Ww=0.0; |
---|
| 120 | vec vecW="1 2 4 9 4 2 0 -4 -9 -16 -4 0 0 0"; |
---|
| 121 | vecW*=10.0; |
---|
| 122 | |
---|
| 123 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
| 124 | //Number of steps of a simulator for one step of Kalman |
---|
| 125 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
| 126 | //simulator |
---|
| 127 | sim_profile_vec01t(Ww,vecW); |
---|
| 128 | pmsmsim_step ( Ww ); |
---|
| 129 | }; |
---|
| 130 | ut(0) = KalmanObs[0]; |
---|
| 131 | ut(1) = KalmanObs[1]; |
---|
| 132 | dt(0) = KalmanObs[2]; |
---|
| 133 | dt(1) = KalmanObs[3]; |
---|
| 134 | xt = vec(x,4); |
---|
| 135 | |
---|
| 136 | //estimator |
---|
| 137 | KFE.bayes ( concat ( dt,ut ) ); |
---|
| 138 | M.bayes ( concat ( dt,ut ) ); |
---|
| 139 | |
---|
| 140 | Xt.set_row ( tK, xt); //vec from C-array |
---|
| 141 | Dt.set_row ( tK, concat ( dt,ut)); |
---|
| 142 | Qtr.set_row ( tK, Qdiag); |
---|
| 143 | XtE.set_row ( tK,KFE._e()->mean() ); |
---|
| 144 | XtM.set_row ( tK,M._e()->mean() ); |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | it_file fou ( "mpf_u_delta.it" ); |
---|
| 148 | |
---|
| 149 | fou << Name ( "xth" ) << Xt; |
---|
| 150 | fou << Name ( "Dt" ) << Dt; |
---|
| 151 | fou << Name ( "Qtr" ) << Qtr; |
---|
| 152 | fou << Name ( "xthE" ) << XtE; |
---|
| 153 | fou << Name ( "xthM" ) << XtM; |
---|
| 154 | //Exit program: |
---|
| 155 | |
---|
| 156 | return 0; |
---|
| 157 | } |
---|