| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Models for synchronous electric drive using IT++ and BDM |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | |
|---|
| 14 | #include <stat/libFN.h> |
|---|
| 15 | #include <stat/emix.h> |
|---|
| 16 | #include <estim/ekf_templ.h> |
|---|
| 17 | #include <estim/libPF.h> |
|---|
| 18 | |
|---|
| 19 | #include "pmsm.h" |
|---|
| 20 | #include "simulator.h" |
|---|
| 21 | #include "sim_profiles.h" |
|---|
| 22 | |
|---|
| 23 | #include <stat/loggers.h> |
|---|
| 24 | |
|---|
| 25 | using namespace bdm; |
|---|
| 26 | |
|---|
| 27 | int main() { |
|---|
| 28 | // Kalman filter |
|---|
| 29 | int Ndat = 90000; |
|---|
| 30 | double h = 1e-6; |
|---|
| 31 | int Nsimstep = 125; |
|---|
| 32 | int Npar = 10; |
|---|
| 33 | |
|---|
| 34 | dirfilelog L("exp/pmsm_mix",1000); |
|---|
| 35 | //memlog L(Ndat); |
|---|
| 36 | |
|---|
| 37 | // SET SIMULATOR |
|---|
| 38 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
|---|
| 39 | double Ww = 0.0; |
|---|
| 40 | vec dt ( 2 ); |
|---|
| 41 | vec ut ( 2 ); |
|---|
| 42 | vec xtm=zeros ( 4 ); |
|---|
| 43 | vec xdif=zeros ( 4 ); |
|---|
| 44 | vec xt ( 4 ); |
|---|
| 45 | vec ddif=zeros(2); |
|---|
| 46 | IMpmsm fxu; |
|---|
| 47 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
|---|
| 48 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
|---|
| 49 | OMpmsm hxu; |
|---|
| 50 | mat Qt=zeros ( 4,4 ); |
|---|
| 51 | mat Rt=zeros ( 2,2 ); |
|---|
| 52 | |
|---|
| 53 | // ESTIMATORS |
|---|
| 54 | vec mu0= "0.0 0.0 0.0 0.0"; |
|---|
| 55 | vec Qdiag ( "62 66 454 0.03" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
|---|
| 56 | vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" |
|---|
| 57 | mat Q =diag( Qdiag ); |
|---|
| 58 | mat R =diag ( Rdiag ); |
|---|
| 59 | EKFfull Efix ; |
|---|
| 60 | Efix.set_est ( mu0, 1*eye ( 4 ) ); |
|---|
| 61 | Efix.set_parameters ( &fxu,&hxu,Q,R); |
|---|
| 62 | |
|---|
| 63 | RV rQR( "{Q R }", "4 2 "); |
|---|
| 64 | EKFful_unQR EKU; |
|---|
| 65 | EKU.set_est ( mu0, 1*ones ( 4 ) ); |
|---|
| 66 | EKU.set_parameters ( &fxu,&hxu,diag(Qdiag),diag(Rdiag) ); |
|---|
| 67 | |
|---|
| 68 | //QU model |
|---|
| 69 | egamma Gcom;Gcom.set_parameters(ones(6),vec("1 1 1e4 1e10 1 1")); |
|---|
| 70 | /* cout << Gcom.mean() <<endl; |
|---|
| 71 | cout << Gcom.sample() <<endl;*/ |
|---|
| 72 | euni Ucom; Ucom.set_parameters(zeros(6),vec("60 60 453 0.03 100 100")); |
|---|
| 73 | /* cout << Ucom.mean() <<endl; |
|---|
| 74 | cout << Ucom.sample() <<endl;*/ |
|---|
| 75 | Array<epdf*> Coms(2); |
|---|
| 76 | Coms(0) = &Gcom; |
|---|
| 77 | Coms(1) = &Ucom; |
|---|
| 78 | emix Eevol; Eevol.set_parameters("0.1 0.9", Coms); |
|---|
| 79 | // cout << Eevol.sample() <<endl; |
|---|
| 80 | |
|---|
| 81 | mepdf evolQR(&Eevol); |
|---|
| 82 | MPF<EKFful_unQR> M ( &evolQR, &evolQR, Npar, EKU ); |
|---|
| 83 | M.set_est ( evolQR._epdf() ); |
|---|
| 84 | |
|---|
| 85 | const epdf& Efix_ep = Efix.posterior(); |
|---|
| 86 | const epdf& M_ep = M.posterior(); |
|---|
| 87 | |
|---|
| 88 | //LOG |
|---|
| 89 | RV rUD( "{u_isa u_isb i_isa i_isb }"); |
|---|
| 90 | int X_log = L.add(rx,"X"); |
|---|
| 91 | int Efix_log = L.add(rx,"XF"); |
|---|
| 92 | RV tmp=concat(rQR,rx); |
|---|
| 93 | int M_log = L.add(tmp,"M"); |
|---|
| 94 | L.init(); |
|---|
| 95 | |
|---|
| 96 | vec dumvec = vec_1(1.0); |
|---|
| 97 | vec z= evolQR.samplecond(dumvec) ; |
|---|
| 98 | cout << z << endl; |
|---|
| 99 | |
|---|
| 100 | for ( int tK=1;tK<Ndat;tK++ ) { |
|---|
| 101 | //Number of steps of a simulator for one step of Kalman |
|---|
| 102 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
|---|
| 103 | sim_profile_steps1 ( Ww, true ); |
|---|
| 104 | pmsmsim_step ( Ww ); |
|---|
| 105 | }; |
|---|
| 106 | // simulation via deterministic model |
|---|
| 107 | ut ( 0 ) = KalmanObs[0]; |
|---|
| 108 | ut ( 1 ) = KalmanObs[1]; |
|---|
| 109 | dt ( 0 ) = KalmanObs[2]; |
|---|
| 110 | dt ( 1 ) = KalmanObs[3]; |
|---|
| 111 | |
|---|
| 112 | //ESTIMATE |
|---|
| 113 | Efix.bayes(concat(dt,ut)); |
|---|
| 114 | // |
|---|
| 115 | M.bayes(concat(dt,ut)); |
|---|
| 116 | |
|---|
| 117 | //LOG |
|---|
| 118 | L.logit(X_log, vec(x,4)); //vec from C-array |
|---|
| 119 | L.logit(Efix_log, Efix_ep.mean() ); |
|---|
| 120 | L.logit(M_log, M_ep.mean() ); |
|---|
| 121 | |
|---|
| 122 | L.step(); |
|---|
| 123 | } |
|---|
| 124 | |
|---|
| 125 | L.finalize(); |
|---|
| 126 | //L.itsave("sim_var.it"); |
|---|
| 127 | |
|---|
| 128 | |
|---|
| 129 | return 0; |
|---|
| 130 | } |
|---|