1 | /* |
---|
2 | \file |
---|
3 | \brief Models for synchronous electric drive using IT++ and BDM |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | |
---|
14 | #include <estim/libKF.h> |
---|
15 | #include <estim/libPF.h> |
---|
16 | #include <stat/libFN.h> |
---|
17 | |
---|
18 | #include <stat/loggers.h> |
---|
19 | |
---|
20 | #include "pmsm.h" |
---|
21 | #include "simulator.h" |
---|
22 | #include "sim_profiles.h" |
---|
23 | |
---|
24 | using namespace bdm; |
---|
25 | //!Extended Kalman filter with unknown \c Q |
---|
26 | class EKF_unQ : public EKFCh , public BMcond { |
---|
27 | public: |
---|
28 | //! Default constructor |
---|
29 | void condition ( const vec &Q0 ) { |
---|
30 | Q.setD ( Q0,0 ); |
---|
31 | //from EKF |
---|
32 | preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); |
---|
33 | }; |
---|
34 | void bayes(const vec dt){ |
---|
35 | EKFCh::bayes(dt); |
---|
36 | |
---|
37 | vec xtrue(4); |
---|
38 | //UGLY HACK!!! reliance on a predictor!! |
---|
39 | xtrue(0)=x[0]; |
---|
40 | xtrue(1)=x[1]; |
---|
41 | xtrue(2)=x[2]; |
---|
42 | xtrue(3)=x[3]; |
---|
43 | |
---|
44 | ll = -0.5* ( 4 * 1.83787706640935 +_P.logdet() +_P.invqform(xtrue)); |
---|
45 | } |
---|
46 | }; |
---|
47 | class EKF_unQful : public EKFfull , public BMcond { |
---|
48 | public: |
---|
49 | void condition ( const vec &Q0 ) { |
---|
50 | Q=diag(Q0); |
---|
51 | }; |
---|
52 | void bayes(const vec dt){ |
---|
53 | EKFfull::bayes(dt); |
---|
54 | |
---|
55 | vec xtrue(4); |
---|
56 | //UGLY HACK!!! reliance on a predictor!! |
---|
57 | xtrue(0)=x[0]; |
---|
58 | xtrue(1)=x[1]; |
---|
59 | xtrue(2)=x[2]; |
---|
60 | xtrue(3)=x[3]; |
---|
61 | |
---|
62 | BM::ll = -0.5* ( 4 * 1.83787706640935 +log(det(P)) +xtrue* ( inv(P)*xtrue ) ); |
---|
63 | } |
---|
64 | }; |
---|
65 | |
---|
66 | int main() { |
---|
67 | // Kalman filter |
---|
68 | int Ndat = 90000; |
---|
69 | double h = 1e-6; |
---|
70 | int Nsimstep = 125; |
---|
71 | int Npart = 50; |
---|
72 | |
---|
73 | dirfilelog L("exp/pmsm_sim2",1000); |
---|
74 | |
---|
75 | // internal model |
---|
76 | IMpmsm fxu; |
---|
77 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
78 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
79 | // observation model |
---|
80 | OMpmsm hxu; |
---|
81 | |
---|
82 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
83 | // vec Qdiag ( "0.01 0.01 0.01 0.0001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
84 | vec Qdiag ( "10 10 10 0.001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
85 | vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" |
---|
86 | chmat Q ( Qdiag ); |
---|
87 | chmat R ( Rdiag ); |
---|
88 | EKFCh KFE ; |
---|
89 | KFE.set_est ( mu0, chmat( 1*eye ( 4 ) ) ); |
---|
90 | KFE.set_parameters ( &fxu,&hxu,Q,R); |
---|
91 | |
---|
92 | RV rQ ( "{Q}","4" ); |
---|
93 | EKF_unQful KFEp ; |
---|
94 | KFEp.set_est ( mu0, 1*ones ( 4 ) ); |
---|
95 | KFEp.set_parameters ( &fxu,&hxu,diag(Qdiag),diag(Rdiag) ); |
---|
96 | |
---|
97 | mgamma_fix evolQ ; |
---|
98 | MPF<EKF_unQful> M ( &evolQ,&evolQ,Npart,KFEp ); |
---|
99 | // initialize |
---|
100 | evolQ.set_parameters ( 1000.0 ,Qdiag, 0.5); //sigma = 1/10 mu |
---|
101 | evolQ.condition ( Qdiag ); //Zdenek default |
---|
102 | epdf& pfinit=evolQ._epdf(); |
---|
103 | M.set_est ( pfinit ); |
---|
104 | evolQ.set_parameters ( 100000.0, Qdiag, 0.9999 ); |
---|
105 | // |
---|
106 | const epdf& KFEep = KFE.posterior(); |
---|
107 | const epdf& Mep = M.posterior(); |
---|
108 | |
---|
109 | int X_log = L.add(rx,"X"); |
---|
110 | int Efix_log = L.add(rx,"XF"); |
---|
111 | RV tmp=concat(rQ,rx); |
---|
112 | int M_log = L.add(tmp,"M"); |
---|
113 | L.init(); |
---|
114 | |
---|
115 | // SET SIMULATOR |
---|
116 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
117 | double Ww=0.0; |
---|
118 | vec dt ( 2 ); |
---|
119 | vec ut ( 2 ); |
---|
120 | |
---|
121 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
122 | //Number of steps of a simulator for one step of Kalman |
---|
123 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
124 | //simulator |
---|
125 | sim_profile_steps1(Ww); |
---|
126 | pmsmsim_step ( Ww ); |
---|
127 | }; |
---|
128 | // collect data |
---|
129 | ut ( 0 ) = KalmanObs[0]; |
---|
130 | ut ( 1 ) = KalmanObs[1]; |
---|
131 | dt ( 0 ) = KalmanObs[2]; |
---|
132 | dt ( 1 ) = KalmanObs[3]; |
---|
133 | |
---|
134 | //estimator |
---|
135 | KFE.bayes ( concat ( dt,ut ) ); |
---|
136 | M.bayes ( concat ( dt,ut ) ); |
---|
137 | |
---|
138 | L.logit(X_log, vec(x,4)); //vec from C-array |
---|
139 | L.logit(Efix_log, KFEep.mean() ); |
---|
140 | L.logit(M_log, Mep.mean() ); |
---|
141 | |
---|
142 | L.step(); |
---|
143 | } |
---|
144 | |
---|
145 | L.finalize(); |
---|
146 | |
---|
147 | return 0; |
---|
148 | } |
---|