1 | /* |
---|
2 | \file |
---|
3 | \brief Models for synchronous electric drive using IT++ and BDM |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | |
---|
14 | #include <estim/libKF.h> |
---|
15 | #include <estim/libPF.h> |
---|
16 | #include <stat/libFN.h> |
---|
17 | |
---|
18 | #include "pmsm.h" |
---|
19 | |
---|
20 | using namespace bdm; |
---|
21 | /* |
---|
22 | // PMSM with Q on Ia and Ib given externally |
---|
23 | class EKF_unQ : public EKF<chmat> , public BMcond { |
---|
24 | public: |
---|
25 | EKF_unQ( rx,ry,ru,rQ):EKF<chmat>(rx,ry,ru),BMcond(rQ){}; |
---|
26 | void condition(const vec &Q0){}; |
---|
27 | };*/ |
---|
28 | |
---|
29 | |
---|
30 | int main() { |
---|
31 | // Kalman filter |
---|
32 | int Ndat = 1000; |
---|
33 | |
---|
34 | // cout << KF; |
---|
35 | // internal model |
---|
36 | IMpmsm fxu; |
---|
37 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
38 | fxu.set_parameters ( 0.28, 0.003465, 20*1e-6, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
39 | // observation model |
---|
40 | OMpmsm hxu; |
---|
41 | |
---|
42 | vec mu0= "100 100 100 1"; |
---|
43 | vec Qdiag ( "0.1 0.1 0.01 0.01" ); |
---|
44 | vec Rdiag ( "0.02 0.02" ); |
---|
45 | vec vQ = "0.01:0.01:100"; |
---|
46 | chmat Q ( Qdiag ); |
---|
47 | chmat R ( Rdiag ); |
---|
48 | EKFCh KFE ; |
---|
49 | KFE.set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); |
---|
50 | KFE.set_parameters ( &fxu,&hxu,Q,R ); |
---|
51 | |
---|
52 | mat ll(100,Ndat); |
---|
53 | |
---|
54 | EKFCh* kfArray[100]; |
---|
55 | |
---|
56 | for ( int i=0;i<100;i++ ) { |
---|
57 | vec Qid ( Qdiag ); |
---|
58 | Qid ( 0 ) = vQ ( i ); Qid ( 1 ) = vQ ( i ); |
---|
59 | kfArray[i]= new EKFCh; |
---|
60 | kfArray[i]->set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); |
---|
61 | kfArray[i]->set_parameters ( &fxu,&hxu,chmat ( Qid ),R ); |
---|
62 | } |
---|
63 | |
---|
64 | const epdf& KFEep = KFE.posterior(); |
---|
65 | |
---|
66 | //simulator values |
---|
67 | vec dt ( 2 ); |
---|
68 | vec wt ( 2 ); |
---|
69 | vec ut ( 2 ); |
---|
70 | vec xt=mu0; |
---|
71 | vec et ( 4 ); |
---|
72 | |
---|
73 | mat Xt=zeros ( 4,Ndat ); |
---|
74 | mat XtE=zeros ( 4,Ndat ); |
---|
75 | Xt.set_col ( 0,KFEep.mean() ); |
---|
76 | |
---|
77 | for ( int t=1;t<Ndat;t++ ) { |
---|
78 | //simulator |
---|
79 | UniRNG.sample_vector ( 2,wt ); |
---|
80 | |
---|
81 | if ( rem ( t,500 ) <200 ) ut = rem ( t,500 ) *ones ( 2 ); |
---|
82 | else |
---|
83 | ut=zeros ( 2 ); |
---|
84 | |
---|
85 | NorRNG.sample_vector ( 4,et ); |
---|
86 | NorRNG.sample_vector ( 2,wt ); |
---|
87 | xt = fxu.eval ( xt,ut ) + Q.sqrt_mult ( et ); |
---|
88 | dt = hxu.eval ( xt,ut ) + R.sqrt_mult ( wt ); |
---|
89 | |
---|
90 | //estimator |
---|
91 | KFE.bayes ( concat ( dt,ut ) ); |
---|
92 | for ( int i=0;i<100;i++ ) {kfArray[i]->bayes( concat ( dt,ut ) );ll(i,t)=ll(i,t-1) + kfArray[i]->_ll(); |
---|
93 | } |
---|
94 | |
---|
95 | Xt.set_col ( t,xt ); |
---|
96 | XtE.set_col ( t,KFEep.mean() ); |
---|
97 | } |
---|
98 | |
---|
99 | it_file fou ( "pmsm.it" ); |
---|
100 | |
---|
101 | fou << Name ( "xth" ) << Xt; |
---|
102 | fou << Name ( "xthE" ) << XtE; |
---|
103 | fou << Name ( "ll" ) << ll; |
---|
104 | //Exit program: |
---|
105 | return 0; |
---|
106 | |
---|
107 | } |
---|