1 | #ifndef PMSM_H |
---|
2 | #define PMSM_H |
---|
3 | |
---|
4 | #include <stat/libFN.h> |
---|
5 | |
---|
6 | /*! \defgroup PMSM |
---|
7 | @{ |
---|
8 | */ |
---|
9 | |
---|
10 | using namespace bdm; |
---|
11 | |
---|
12 | //TODO hardcoded RVs!!! |
---|
13 | RV rx ( "{ia ib om th }"); |
---|
14 | RV ru ( "{ua ub }"); |
---|
15 | RV ry ( "{oia oib }"); |
---|
16 | |
---|
17 | // class uipmsm : public uibase{ |
---|
18 | // double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
---|
19 | // }; |
---|
20 | |
---|
21 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$ |
---|
22 | class IMpmsm : public diffbifn { |
---|
23 | protected: |
---|
24 | double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
---|
25 | |
---|
26 | public: |
---|
27 | IMpmsm() :diffbifn (rx.count(), rx, ru ) {}; |
---|
28 | //! Set mechanical and electrical variables |
---|
29 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0;} |
---|
30 | |
---|
31 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
32 | // last state |
---|
33 | double iam = x0 ( 0 ); |
---|
34 | double ibm = x0 ( 1 ); |
---|
35 | double omm = x0 ( 2 ); |
---|
36 | double thm = x0 ( 3 ); |
---|
37 | double uam = u0 ( 0 ); |
---|
38 | double ubm = u0 ( 1 ); |
---|
39 | |
---|
40 | vec xk=zeros ( 4 ); |
---|
41 | //ia |
---|
42 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + uam*dt/Ls; |
---|
43 | //ib |
---|
44 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + ubm*dt/Ls; |
---|
45 | //om |
---|
46 | xk ( 2 ) = omm + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ) - p/J*dt*Mz; |
---|
47 | //th |
---|
48 | xk ( 3 ) = thm + omm*dt; // <0..2pi> |
---|
49 | if ( xk ( 3 ) >pi ) xk ( 3 )-=2*pi; |
---|
50 | if ( xk ( 3 ) <-pi ) xk ( 3 ) +=2*pi; |
---|
51 | return xk; |
---|
52 | } |
---|
53 | |
---|
54 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
55 | double iam = x0 ( 0 ); |
---|
56 | double ibm = x0 ( 1 ); |
---|
57 | double omm = x0 ( 2 ); |
---|
58 | double thm = x0 ( 3 ); |
---|
59 | // d ia |
---|
60 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
---|
61 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
---|
62 | // d ib |
---|
63 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
---|
64 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
---|
65 | // d om |
---|
66 | A ( 2,0 ) = kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
---|
67 | A ( 2,1 ) = kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
---|
68 | A ( 2,2 ) = 1.0; |
---|
69 | A ( 2,3 ) = kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
---|
70 | // d th |
---|
71 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
---|
72 | } |
---|
73 | |
---|
74 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
---|
75 | |
---|
76 | }; |
---|
77 | |
---|
78 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$ |
---|
79 | class IMpmsm2o : public diffbifn { |
---|
80 | protected: |
---|
81 | double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
---|
82 | //! store first derivatives for the use in second derivatives |
---|
83 | double dia, dib, dom, dth; |
---|
84 | //! d2t = dt^2/2, cth = cos(th), sth=sin(th) |
---|
85 | double d2t, cth, sth; |
---|
86 | double iam, ibm, omm, thm, uam, ubm; |
---|
87 | public: |
---|
88 | IMpmsm2o() :diffbifn (rx.count(), rx, ru ) {}; |
---|
89 | //! Set mechanical and electrical variables |
---|
90 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0; d2t=dt*dt/2;} |
---|
91 | |
---|
92 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
93 | // last state |
---|
94 | iam = x0 ( 0 ); |
---|
95 | ibm = x0 ( 1 ); |
---|
96 | omm = x0 ( 2 ); |
---|
97 | thm = x0 ( 3 ); |
---|
98 | uam = u0 ( 0 ); |
---|
99 | ubm = u0 ( 1 ); |
---|
100 | |
---|
101 | cth = cos(thm); |
---|
102 | sth = sin(thm); |
---|
103 | |
---|
104 | dia = (- Rs/Ls*iam + Ypm/Ls*omm * sth + uam/Ls); |
---|
105 | dib = (- Rs/Ls*ibm - Ypm/Ls*omm * cth + ubm/Ls); |
---|
106 | dom = kp*p*p * Ypm/J *( ibm * cth-iam * sth ) - p/J*Mz; |
---|
107 | dth = omm; |
---|
108 | |
---|
109 | vec xk=zeros ( 4 ); |
---|
110 | xk ( 0 ) = iam + dt*dia;// +d2t*d2ia; |
---|
111 | xk ( 1 ) = ibm + dt*dib;// +d2t*d2ib; |
---|
112 | xk ( 2 ) = omm +dt*dom;// +d2t*d2om; |
---|
113 | xk ( 3 ) = thm + dt*dth;// +d2t*d2th; // <0..2pi> |
---|
114 | |
---|
115 | if ( xk ( 3 ) >pi ) xk ( 3 )-=2*pi; |
---|
116 | if ( xk ( 3 ) <-pi ) xk ( 3 ) +=2*pi; |
---|
117 | return xk; |
---|
118 | } |
---|
119 | |
---|
120 | //! eval 2nd order Taylor expansion, MUST be used only as a follow up AFTER eval()!! |
---|
121 | vec eval2o(const vec &du){ |
---|
122 | double dua = du ( 0 )/dt; |
---|
123 | double dub = du ( 1 )/dt; |
---|
124 | |
---|
125 | vec xth2o(4); |
---|
126 | xth2o(0) = (- Rs/Ls*dia + Ypm/Ls*(dom * sth + omm*cth) + dua/Ls); |
---|
127 | xth2o(1) = (- Rs/Ls*dib - Ypm/Ls*(dom * cth - omm*sth) + dub/Ls); |
---|
128 | xth2o(2) = kp*p*p * Ypm/J *( dib * cth-ibm*sth - (dia * sth + iam *cth)); |
---|
129 | xth2o(3) = dom; |
---|
130 | return xth2o; |
---|
131 | } |
---|
132 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
133 | iam = x0 ( 0 ); |
---|
134 | ibm = x0 ( 1 ); |
---|
135 | omm = x0 ( 2 ); |
---|
136 | thm = x0 ( 3 ); |
---|
137 | // d ia |
---|
138 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
---|
139 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
---|
140 | // d ib |
---|
141 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
---|
142 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
---|
143 | // d om |
---|
144 | A ( 2,0 ) = kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
---|
145 | A ( 2,1 ) = kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
---|
146 | A ( 2,2 ) = 1.0; |
---|
147 | A ( 2,3 ) = kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
---|
148 | // d th |
---|
149 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
---|
150 | } |
---|
151 | |
---|
152 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
---|
153 | |
---|
154 | }; |
---|
155 | |
---|
156 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$, equation for \f$\omega\f$ is omitted.$ |
---|
157 | class IMpmsmStat : public IMpmsm { |
---|
158 | public: |
---|
159 | IMpmsmStat() :IMpmsm() {}; |
---|
160 | //! Set mechanical and electrical variables |
---|
161 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0;} |
---|
162 | |
---|
163 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
164 | // last state |
---|
165 | double iam = x0 ( 0 ); |
---|
166 | double ibm = x0 ( 1 ); |
---|
167 | double omm = x0 ( 2 ); |
---|
168 | double thm = x0 ( 3 ); |
---|
169 | double uam = u0 ( 0 ); |
---|
170 | double ubm = u0 ( 1 ); |
---|
171 | |
---|
172 | vec xk=zeros ( 4 ); |
---|
173 | //ia |
---|
174 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + uam*dt/Ls; |
---|
175 | //ib |
---|
176 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + ubm*dt/Ls; |
---|
177 | //om |
---|
178 | xk ( 2 ) = omm;// + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ) - p/J*dt*Mz; |
---|
179 | //th |
---|
180 | xk ( 3 ) = rem(thm + omm*dt,2*pi); // <0..2pi> |
---|
181 | return xk; |
---|
182 | } |
---|
183 | |
---|
184 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
185 | // double iam = x0 ( 0 ); |
---|
186 | // double ibm = x0 ( 1 ); |
---|
187 | double omm = x0 ( 2 ); |
---|
188 | double thm = x0 ( 3 ); |
---|
189 | // d ia |
---|
190 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
---|
191 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
---|
192 | // d ib |
---|
193 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
---|
194 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
---|
195 | // d om |
---|
196 | A ( 2,0 ) = 0.0;//kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
---|
197 | A ( 2,1 ) = 0.0;//kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
---|
198 | A ( 2,2 ) = 1.0; |
---|
199 | A ( 2,3 ) = 0.0;//kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
---|
200 | // d th |
---|
201 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
---|
202 | } |
---|
203 | |
---|
204 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
---|
205 | |
---|
206 | }; |
---|
207 | |
---|
208 | //! Observation model for PMSM drive and its derivative with respect to \f$x\f$ |
---|
209 | class OMpmsm: public diffbifn { |
---|
210 | public: |
---|
211 | OMpmsm() :diffbifn (2, rx,ru ) {}; |
---|
212 | |
---|
213 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
214 | vec y ( 2 ); |
---|
215 | y ( 0 ) = x0 ( 0 ); |
---|
216 | y ( 1 ) = x0 ( 1 ); |
---|
217 | return y; |
---|
218 | } |
---|
219 | |
---|
220 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
221 | A.clear(); |
---|
222 | A ( 0,0 ) = 1.0; |
---|
223 | A ( 1,1 ) = 1.0; |
---|
224 | } |
---|
225 | }; |
---|
226 | |
---|
227 | /*!@}*/ |
---|
228 | #endif //PMSM_H |
---|