1 | /*! |
---|
2 | \file |
---|
3 | \brief DataSource for experiments with realistic simulator of the PMSM model |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #include <stat/loggers.h> |
---|
14 | #include "simulator.h" |
---|
15 | #include "pmsm.h" |
---|
16 | |
---|
17 | //! Simulator of PMSM machine with predefined profile on omega |
---|
18 | class pmsmDS : public DS { |
---|
19 | |
---|
20 | protected: |
---|
21 | //! indeces of logged variables |
---|
22 | int L_x, L_ou, L_oy, L_iu, L_optu; |
---|
23 | //! Setpoints of omega in timespans given by dt_prof |
---|
24 | vec profileWw; |
---|
25 | //! time-step for profiles |
---|
26 | double dt_prof; |
---|
27 | //! Number of miliseconds per discrete time step |
---|
28 | int Dt; |
---|
29 | //! options for logging, string in which each character has a meaning: |
---|
30 | //! \c u - log predictions of 'true' voltage |
---|
31 | string opt; |
---|
32 | public: |
---|
33 | //! Constructor with fixed sampling period |
---|
34 | pmsmDS (string opt0="" ) : Dt ( 125 ), opt(opt0) {} |
---|
35 | void set_parameters ( double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0 ) { |
---|
36 | pmsmsim_set_parameters ( Rs0, Ls0, Fmag0, Bf0, p0, kp0, J0, Uc0, DT0, dt0 ); |
---|
37 | } |
---|
38 | void getdata ( vec &dt ) {dt=vec ( KalmanObs,6 );} |
---|
39 | void write ( vec &ut ) {} |
---|
40 | |
---|
41 | void step() { |
---|
42 | static int ind=0; |
---|
43 | static double dW; // increase of W |
---|
44 | static double Ww; // W |
---|
45 | if ( t>=dt_prof*ind ) { |
---|
46 | ind++; |
---|
47 | if ( ind<profileWw.length() ) { |
---|
48 | //linear increase |
---|
49 | if ( profileWw.length() ==1 ) { |
---|
50 | Ww=profileWw ( 0 ); dW=0.0;} |
---|
51 | else { |
---|
52 | dW = profileWw ( ind )-profileWw ( ind-1 ); |
---|
53 | dW *=125e-6/dt_prof; |
---|
54 | } |
---|
55 | } |
---|
56 | else { |
---|
57 | dW = 0; |
---|
58 | } |
---|
59 | } |
---|
60 | Ww += dW; |
---|
61 | //Simulate Dt seconds! |
---|
62 | for ( int i=0;i<Dt;i++ ) { pmsmsim_step ( Ww );} |
---|
63 | }; |
---|
64 | |
---|
65 | void log_add ( logger &L ) { |
---|
66 | L_x = L.add ( rx, "x" ); |
---|
67 | L_oy = L.add ( ry, "obs" ); |
---|
68 | L_ou = L.add ( ru, "obs" ); |
---|
69 | L_iu = L.add ( ru, "true" ); |
---|
70 | // log differences |
---|
71 | if (opt.find("u")==string::npos){ |
---|
72 | L_optu = L.add(ru, "model"); |
---|
73 | } |
---|
74 | } |
---|
75 | |
---|
76 | void logit ( logger &L ) { |
---|
77 | L.logit ( L_x, vec ( x,4 ) ); |
---|
78 | L.logit ( L_oy, vec_2 ( KalmanObs[2],KalmanObs[3] ) ); |
---|
79 | L.logit ( L_ou, vec_2 ( KalmanObs[0],KalmanObs[1] ) ); |
---|
80 | L.logit ( L_iu, vec_2 ( KalmanObs[4],KalmanObs[5] ) ); |
---|
81 | if (opt.find("u")==string::npos){ |
---|
82 | double sq3=sqrt(3.0); |
---|
83 | double ua,ub; |
---|
84 | double i1=x[0]; |
---|
85 | double i2=0.5*(-i1+sq3*x[1]); |
---|
86 | double i3=0.5*(-i1-sq3*x[1]); |
---|
87 | double u1=KalmanObs[0]; |
---|
88 | double u2=0.5*(-u1+sq3*KalmanObs[1]); |
---|
89 | double u3=0.5*(-u1-sq3*KalmanObs[1]); |
---|
90 | |
---|
91 | double du1=0.7*(double(i1>0.1) - double(i1<-0.1))+0.05*i1; |
---|
92 | double du2=0.7*(double(i2>0.1) - double(i2<-0.1))+0.05*i2; |
---|
93 | double du3=0.7*(double(i3>0.1) - double(i3<-0.1))+0.05*i3; |
---|
94 | ua = (2.0*(u1-du1)-(u2-du2)-(u3-du3))/3.0; |
---|
95 | ub = ((u2-du2)-(u3-du3))/sq3; |
---|
96 | L.logit( L_optu , vec_2 (ua,ub)); |
---|
97 | } |
---|
98 | } |
---|
99 | |
---|
100 | void set_profile ( double dt, const vec &Ww ) {dt_prof=dt; profileWw=Ww;} |
---|
101 | }; |
---|