/* \file \brief Models for synchronous electric drive using IT++ and BDM \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #include #include #include #include #include #include "pmsm.h" #include "simulator.h" #include "sim_profiles.h" using namespace itpp; //!Extended Kalman filter with unknown \c Q class EKF_unQ : public EKFCh , public BMcond { public: //! Default constructor EKF_unQ ( RV rx, RV ry,RV ru,RV rQ ) :EKFCh ( rx,ry,ru ),BMcond ( rQ ) {}; void condition ( const vec &Q0 ) { Q.setD ( Q0,0 ); //from EKF preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); }; void bayes(const vec dt){ EKFCh::bayes(dt); vec xtrue(4); //UGLY HACK!!! reliance on a predictor!! xtrue(0)=x[0]; xtrue(1)=x[1]; xtrue(2)=x[2]; xtrue(3)=x[3]; ll = -0.5* ( 4 * 1.83787706640935 +_P.logdet() +_P.invqform(xtrue)); } }; class EKF_unQful : public EKFfull , public BMcond { public: //! Default constructor EKF_unQful ( RV rx, RV ry,RV ru,RV rQ ) :EKFfull ( rx,ry,ru ),BMcond ( rQ ) {}; void condition ( const vec &Q0 ) { Q=diag(Q0); }; void bayes(const vec dt){ EKFfull::bayes(dt); vec xtrue(4); //UGLY HACK!!! reliance on a predictor!! xtrue(0)=x[0]; xtrue(1)=x[1]; xtrue(2)=x[2]; xtrue(3)=x[3]; BM::ll = -0.5* ( 4 * 1.83787706640935 +log(det(P)) +xtrue* ( inv(P)*xtrue ) ); } }; int main() { // Kalman filter int Ndat = 90000; double h = 1e-6; int Nsimstep = 125; int Npart = 50; dirfilelog L("exp/pmsm_sim2",1000); // internal model IMpmsm fxu; // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); // observation model OMpmsm hxu; vec mu0= "0.0 0.0 0.0 0.0"; // vec Qdiag ( "0.01 0.01 0.01 0.0001" ); //zdenek: 0.01 0.01 0.0001 0.0001 vec Qdiag ( "10 10 10 0.001" ); //zdenek: 0.01 0.01 0.0001 0.0001 vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" chmat Q ( Qdiag ); chmat R ( Rdiag ); EKFCh KFE ( rx,ry,ru ); KFE.set_est ( mu0, chmat( 1*eye ( 4 ) ) ); KFE.set_parameters ( &fxu,&hxu,Q,R); RV rQ ( "100","{Q}","4","0" ); EKF_unQful KFEp ( rx,ry,ru,rQ ); KFEp.set_est ( mu0, 1*ones ( 4 ) ); KFEp.set_parameters ( &fxu,&hxu,diag(Qdiag),diag(Rdiag) ); mgamma_fix evolQ ( rQ,rQ ); MPF M ( rx,rQ,evolQ,evolQ,Npart,KFEp ); // initialize evolQ.set_parameters ( 1000.0 ,Qdiag, 0.5); //sigma = 1/10 mu evolQ.condition ( Qdiag ); //Zdenek default epdf& pfinit=evolQ._epdf(); M.set_est ( pfinit ); evolQ.set_parameters ( 100000.0, Qdiag, 0.9999 ); // epdf& KFEep = KFE._epdf(); epdf& Mep = M._epdf(); int X_log = L.add(rx,"X"); int Efix_log = L.add(rx,"XF"); int M_log = L.add(concat(rQ,rx),"M"); L.init(); // SET SIMULATOR pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); double Ww=0.0; vec dt ( 2 ); vec ut ( 2 ); for ( int tK=1;tK