1 | /* |
---|
2 | \file |
---|
3 | \brief Models for synchronous electric drive using IT++ and BDM |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #include <itpp/itbase.h> |
---|
14 | #include <estim/libKF.h> |
---|
15 | #include <estim/libPF.h> |
---|
16 | #include <stat/libFN.h> |
---|
17 | |
---|
18 | #include "pmsm.h" |
---|
19 | #include "simulator.h" |
---|
20 | |
---|
21 | #include "../simulator_zdenek/ekf_example/ekf_obj.h" |
---|
22 | #include "iopom.h" |
---|
23 | |
---|
24 | using namespace itpp; |
---|
25 | //!Extended Kalman filter with unknown \c Q |
---|
26 | |
---|
27 | void set_simulator_t(double &Ww) { |
---|
28 | |
---|
29 | if (t>0.0002) x[8]=1.2; // 1A //0.2ZP |
---|
30 | if (t>0.4) x[8]=10.8; // 9A |
---|
31 | if (t>0.6) x[8]=25.2; // 21A |
---|
32 | |
---|
33 | if (t>0.7) Ww=2.*M_PI*10.; |
---|
34 | if (t>1.0) x[8]=1.2; // 1A |
---|
35 | if (t>1.2) x[8]=10.8; // 9A |
---|
36 | if (t>1.4) x[8]=25.2; // 21A |
---|
37 | |
---|
38 | if (t>1.6) Ww=2.*M_PI*50.; |
---|
39 | if (t>1.9) x[8]=1.2; // 1A |
---|
40 | if (t>2.1) x[8]=10.8; // 9A |
---|
41 | if (t>2.3) x[8]=25.2; // 21A |
---|
42 | |
---|
43 | if (t>2.5) Ww=2.*M_PI*100; |
---|
44 | if (t>2.8) x[8]=1.2; // 1A |
---|
45 | if (t>3.0) x[8]=10.8; // 9A |
---|
46 | if (t>3.2) x[8]=25.2; // 21A |
---|
47 | |
---|
48 | if (t>3.4) Ww=2.*M_PI*150; |
---|
49 | if (t>3.7) x[8]=1.2; // 1A |
---|
50 | if (t>3.9) x[8]=10.8; // 9A |
---|
51 | if (t>4.1) x[8]=25.2; // 21A |
---|
52 | |
---|
53 | if (t>4.3) Ww=2.*M_PI*0; |
---|
54 | if (t>4.8) x[8]=-1.2; // 1A |
---|
55 | if (t>5.0) x[8]=-10.8; // 9A |
---|
56 | if (t>5.2) x[8]=-25.2; // 21A |
---|
57 | |
---|
58 | if (t>5.4) Ww=2.*M_PI*(-10.); |
---|
59 | if (t>5.7) x[8]=-1.2; // 1A |
---|
60 | if (t>5.9) x[8]=-10.8; // 9A |
---|
61 | if (t>6.1) x[8]=-25.2; // 21A |
---|
62 | |
---|
63 | if (t>6.3) Ww=2.*M_PI*(-50.); |
---|
64 | if (t>6.7) x[8]=-1.2; // 1A |
---|
65 | if (t>6.9) x[8]=-10.8; // 9A |
---|
66 | if (t>7.1) x[8]=-25.2; // 21A |
---|
67 | |
---|
68 | if (t>7.3) Ww=2.*M_PI*(-100.); |
---|
69 | if (t>7.7) x[8]=-1.2; // 1A |
---|
70 | if (t>7.9) x[8]=-10.8; // 9A |
---|
71 | if (t>8.1) x[8]=-25.2; // 21A |
---|
72 | if (t>8.3) x[8]=10.8; // 9A |
---|
73 | if (t>8.5) x[8]=25.2; // 21A |
---|
74 | |
---|
75 | x[8]=0.0; |
---|
76 | } |
---|
77 | |
---|
78 | int main() { |
---|
79 | // Kalman filter |
---|
80 | int Ndat = 90000; |
---|
81 | double h = 1e-6; |
---|
82 | int Nsimstep = 125; |
---|
83 | int Npart = 100; |
---|
84 | |
---|
85 | |
---|
86 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
87 | vec Qdiag ( "0.05 0.05 0.002 0.001" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
---|
88 | vec Rdiag ( "0.05 0.05" ); //var(diff(xth)) = "0.034 0.034" |
---|
89 | chmat Q ( Qdiag ); |
---|
90 | chmat R ( Rdiag ); |
---|
91 | |
---|
92 | RV rQ ( "100","{Q}","4","0" ); |
---|
93 | EKFfixed KFE ( rx, rQ); |
---|
94 | KFE.init_ekf ( Nsimstep*h); |
---|
95 | |
---|
96 | |
---|
97 | ///////////// Particles |
---|
98 | mgamma_fix evolQ ( rQ,rQ ); |
---|
99 | MPF<EKFfixed> M ( rx,rQ,evolQ,evolQ,Npart,KFE ); |
---|
100 | // initialize |
---|
101 | evolQ.set_parameters ( 10.0 ,Qdiag, 1.0); //sigma = 1/10 mu |
---|
102 | evolQ.condition ( Qdiag ); //Zdenek default |
---|
103 | epdf& pfinit=evolQ._epdf(); |
---|
104 | M.set_est ( pfinit ); |
---|
105 | evolQ.set_parameters ( 500000.0, Qdiag, 0.9999 ); |
---|
106 | |
---|
107 | |
---|
108 | epdf& KFEep = KFE._epdf(); |
---|
109 | epdf& Mep = M._epdf(); |
---|
110 | |
---|
111 | |
---|
112 | mat Xt=zeros ( Ndat ,9 ); //true state from simulator |
---|
113 | mat Dt=zeros ( Ndat,4 ); //observation |
---|
114 | mat XtE=zeros ( Ndat, 4 ); |
---|
115 | mat XtM=zeros ( Ndat,4+4 ); //Q + x |
---|
116 | |
---|
117 | // SET SIMULATOR |
---|
118 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
119 | double Ww=0.0; |
---|
120 | static int k_rampa=1; |
---|
121 | static long k_rampa_tmp=0; |
---|
122 | |
---|
123 | vec dt ( 2 ); |
---|
124 | vec ut ( 2 ); |
---|
125 | |
---|
126 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
127 | //Number of steps of a simulator for one step of Kalman |
---|
128 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
129 | //simulator |
---|
130 | Ww+=k_rampa*2.*M_PI*2e-4; //1000Hz/s |
---|
131 | if ( Ww>2.*M_PI*150. ) { |
---|
132 | Ww=2.*M_PI*150.; |
---|
133 | if ( k_rampa_tmp<500000 ) k_rampa_tmp++; |
---|
134 | else {k_rampa=-1;k_rampa_tmp=0;} |
---|
135 | }; |
---|
136 | if ( Ww<-2.*M_PI*150. ) Ww=-2.*M_PI*150.; /* */ |
---|
137 | // set_simulator_t(Ww); |
---|
138 | pmsmsim_step ( Ww ); |
---|
139 | }; |
---|
140 | // collect data |
---|
141 | ut ( 0 ) = KalmanObs[0]; |
---|
142 | ut ( 1 ) = KalmanObs[1]; |
---|
143 | dt ( 0 ) = KalmanObs[2]; |
---|
144 | dt ( 1 ) = KalmanObs[3]; |
---|
145 | //estimator |
---|
146 | KFE.bayes ( concat ( dt,ut ) ); |
---|
147 | M.bayes ( concat ( dt,ut ) ); |
---|
148 | |
---|
149 | Xt.set_row ( tK,vec ( x,9 ) ); //vec from C-array |
---|
150 | Dt.set_row ( tK, concat ( dt,ut)); |
---|
151 | XtE.set_row ( tK,KFEep.mean() ); |
---|
152 | XtM.set_row ( tK,Mep.mean() ); |
---|
153 | } |
---|
154 | |
---|
155 | char tmpstr[200]; |
---|
156 | sprintf(tmpstr,"%s/%s","herez/","format"); |
---|
157 | ofstream form(tmpstr); |
---|
158 | form << "# Experimetal header file"<< endl; |
---|
159 | dirfile_write(form,"herez/",Xt,"X","{isa isb om th }" ); |
---|
160 | dirfile_write ( form,"herez",XtM,"XtM","{q1 q2 q3 q4 isa isb om th }" ); |
---|
161 | dirfile_write ( form,"herez",XtE,"XE","{isa isb om th }" ); |
---|
162 | dirfile_write ( form,"herez",Dt,"Dt","{isa isb ua ub }" ); |
---|
163 | |
---|
164 | return 0; |
---|
165 | } |
---|