/* \file \brief Models for synchronous electric drive using IT++ and BDM \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #include #include #include #include #include #include "pmsm.h" #include "simulator.h" #include "sim_profiles.h" using namespace itpp; int main() { // Kalman filter int Ndat = 9000; double h = 1e-6; int Nsimstep = 125; int Npart = 50; dirfilelog L("exp/pmsm_sim2",Ndat); // internal model IMpmsm fxu; // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); // observation model OMpmsm hxu; vec mu0= "0.0 0.0 0.0 0.0"; // vec Qdiag ( "0.01 0.01 0.01 0.0001" ); //zdenek: 0.01 0.01 0.0001 0.0001 vec Qdiag ( "0.07 0.056 0.0007 0.0007" ); //zdenek: 0.01 0.01 0.0001 0.0001 vec Rdiag ( "0.005 0.005" ); //var(diff(xth)) = "0.034 0.034" EKFfull KFE ( rx,ry,ru ); KFE.set_est ( mu0, diag ( vec("1 1 1 3.1415") ) ); KFE.set_parameters ( &fxu,&hxu,diag(Qdiag),diag(Rdiag)); int X_log = L.add(rx,"X"); int E_log = L.add(rx,"E"); int V_log = L.add(rx,"V"); int U_log = L.add(ru,"U"); int R_log = L.add(RV("{_ }","4"),"R"); // int O_log = L.add(RV("{_ }","16"),"O"); L.init(); // SET SIMULATOR pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); double Ww=0.0; vec dt ( 2 ); vec xm = zeros(4); vec xt = zeros(4); vec xp = zeros(4); vec u=zeros(2); ldmat R(eye(4),0.001*ones(4)); mat Ch=zeros(4,4); fsqmat eCh(4); for ( int tK=1;tK_R(); eCh = KFE._R(); xm = xt; L.logit(X_log, xt ); L.logit(U_log, u ); L.logit(R_log, diag(Ch.T()*Ch) ); //3.33=1/(1-0.7) L.logit(V_log, diag(eCh.to_mat()) ); //3.33=1/(1-0.7) L.logit(E_log, KFE._e()->mean() ); // L.logit(O_log, vec(iCh._data(),16)); //3.33=1/(1-0.7) // L.logit(Efix_log, KFEep.mean() ); // L.logit(M_log, Mep.mean() ); L.step(); } L.finalize(); L.itsave("xxx.it"); return 0; }