| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Models for synchronous electric drive using IT++ and BDM |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | #include <itpp/itbase.h> |
|---|
| 14 | #include <stat/libFN.h> |
|---|
| 15 | #include <estim/libKF.h> |
|---|
| 16 | //#include <estim/libPF.h> |
|---|
| 17 | #include <math/chmat.h> |
|---|
| 18 | |
|---|
| 19 | #include "pmsm.h" |
|---|
| 20 | #include "simulator.h" |
|---|
| 21 | #include "sim_profiles.h" |
|---|
| 22 | |
|---|
| 23 | #include <stat/loggers.h> |
|---|
| 24 | |
|---|
| 25 | using namespace itpp; |
|---|
| 26 | //!Extended Kalman filter with unknown \c Q |
|---|
| 27 | |
|---|
| 28 | int main() { |
|---|
| 29 | // Kalman filter |
|---|
| 30 | int Ndat = 90000; |
|---|
| 31 | double h = 1e-6; |
|---|
| 32 | int Nsimstep = 125; |
|---|
| 33 | |
|---|
| 34 | dirfilelog L("exp/sim_var",1000); |
|---|
| 35 | //memlog L(Ndat); |
|---|
| 36 | |
|---|
| 37 | // SET SIMULATOR |
|---|
| 38 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
|---|
| 39 | double Ww = 0.0; |
|---|
| 40 | vec dt ( 2 ); |
|---|
| 41 | vec ut ( 2 ); |
|---|
| 42 | vec dut ( 4 ); |
|---|
| 43 | vec dit (2); |
|---|
| 44 | vec xtm=zeros ( 4 ); |
|---|
| 45 | vec xdif=zeros ( 4 ); |
|---|
| 46 | vec xt ( 4 ); |
|---|
| 47 | vec ddif=zeros(2); |
|---|
| 48 | IMpmsm fxu; |
|---|
| 49 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
|---|
| 50 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
|---|
| 51 | OMpmsm hxu; |
|---|
| 52 | mat Qt=zeros ( 4,4 ); |
|---|
| 53 | mat Rt=zeros ( 2,2 ); |
|---|
| 54 | |
|---|
| 55 | // ESTIMATORS |
|---|
| 56 | vec mu0= "0.0 0.0 0.0 0.0"; |
|---|
| 57 | vec Qdiag ( "62 66 454 0.03" ); //zdenek: 0.01 0.01 0.0001 0.0001 |
|---|
| 58 | vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" |
|---|
| 59 | mat Q =diag( Qdiag ); |
|---|
| 60 | mat R =diag ( Rdiag ); |
|---|
| 61 | EKFfull Efix ( rx,ry,ru ); |
|---|
| 62 | Efix.set_est ( mu0, 1*eye ( 4 ) ); |
|---|
| 63 | Efix.set_parameters ( &fxu,&hxu,Q,R); |
|---|
| 64 | |
|---|
| 65 | EKFfull Eop ( rx,ry,ru ); |
|---|
| 66 | Eop.set_est ( mu0, 1*eye ( 4 ) ); |
|---|
| 67 | Eop.set_parameters ( &fxu,&hxu,Q,R); |
|---|
| 68 | |
|---|
| 69 | EKFfull Edi ( rx,ry,ru ); |
|---|
| 70 | Edi.set_est ( mu0, 1*eye ( 4 ) ); |
|---|
| 71 | Edi.set_parameters ( &fxu,&hxu,Q,R); |
|---|
| 72 | |
|---|
| 73 | epdf& Efix_ep = Efix._epdf(); |
|---|
| 74 | epdf& Eop_ep = Eop._epdf(); |
|---|
| 75 | epdf& Edi_ep = Edi._epdf(); |
|---|
| 76 | |
|---|
| 77 | //LOG |
|---|
| 78 | RV rQ("10", "{Q }", "16","0"); |
|---|
| 79 | RV rR("11", "{R }", "4","0"); |
|---|
| 80 | RV rUD("12 13 14 15", "{u_isa u_isb i_isa i_isb }", ones_i(4),zeros_i(4)); |
|---|
| 81 | RV rDu("16 17 18 19","{dux duy duxf duyf }",ones_i(4),zeros_i(4)); |
|---|
| 82 | RV rDi("20 21","{disa disb }",ones_i(2),zeros_i(2)); |
|---|
| 83 | int X_log = L.add(rx,"X"); |
|---|
| 84 | int Efix_log = L.add(rx,"XF"); |
|---|
| 85 | int Eop_log = L.add(rx,"XO"); |
|---|
| 86 | int Edi_log = L.add(rx,"XD"); |
|---|
| 87 | int Q_log = L.add(rQ,"Q"); |
|---|
| 88 | int R_log = L.add(rR,"R"); |
|---|
| 89 | int D_log = L.add(rUD,"D"); |
|---|
| 90 | int Du_log = L.add(rDu,"Du"); |
|---|
| 91 | int Di_log = L.add(rDi,"Di"); |
|---|
| 92 | L.init(); |
|---|
| 93 | |
|---|
| 94 | for ( int tK=1;tK<Ndat;tK++ ) { |
|---|
| 95 | //Number of steps of a simulator for one step of Kalman |
|---|
| 96 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
|---|
| 97 | sim_profile_steps1 ( Ww , true); |
|---|
| 98 | pmsmsim_step ( Ww ); |
|---|
| 99 | }; |
|---|
| 100 | // simulation via deterministic model |
|---|
| 101 | ut ( 0 ) = KalmanObs[0]; |
|---|
| 102 | ut ( 1 ) = KalmanObs[1]; |
|---|
| 103 | dt ( 0 ) = KalmanObs[2]; |
|---|
| 104 | dt ( 1 ) = KalmanObs[3]; |
|---|
| 105 | dut ( 0 ) = KalmanObs[4]; |
|---|
| 106 | dut ( 1 ) = KalmanObs[5]; |
|---|
| 107 | dut ( 2 ) = KalmanObs[6]; |
|---|
| 108 | dut ( 3 ) = KalmanObs[7]; |
|---|
| 109 | dit ( 0 ) = KalmanObs[8]; |
|---|
| 110 | dit ( 1 ) = KalmanObs[9]; |
|---|
| 111 | |
|---|
| 112 | xt = fxu.eval ( xtm,ut ); |
|---|
| 113 | //Results: |
|---|
| 114 | // in xt we have simulaton according to the model |
|---|
| 115 | // in x we have "reality" |
|---|
| 116 | xtm ( 0 ) =x[0];xtm ( 1 ) =x[1];xtm ( 2 ) =x[2];xtm ( 3 ) =x[3]; |
|---|
| 117 | xdif = xtm-xt; |
|---|
| 118 | if (xdif(0)>3.0){ |
|---|
| 119 | cout << "here" <<endl; |
|---|
| 120 | } |
|---|
| 121 | if ( xdif ( 3 ) >pi ) xdif ( 3 )-=2*pi; |
|---|
| 122 | if ( xdif ( 3 ) <-pi ) xdif ( 3 ) +=2*pi; |
|---|
| 123 | |
|---|
| 124 | ddif = hxu.eval(xtm,ut) - dt; |
|---|
| 125 | |
|---|
| 126 | //Rt = 0.9*Rt + xdif^2 |
|---|
| 127 | Qt*=0.01; |
|---|
| 128 | Qt += outer_product ( xdif,xdif ); //(x-xt)^2 |
|---|
| 129 | Rt*=0.01; |
|---|
| 130 | Rt += outer_product ( ddif,ddif ); //(x-xt)^2 |
|---|
| 131 | |
|---|
| 132 | //ESTIMATE |
|---|
| 133 | Efix.bayes(concat(dt,ut)); |
|---|
| 134 | // |
|---|
| 135 | Eop.set_parameters ( &fxu,&hxu,(Qt+1e-16*eye(4)),(Rt+1e-3*eye(2))); |
|---|
| 136 | Eop.bayes(concat(dt,ut)); |
|---|
| 137 | // |
|---|
| 138 | Edi.set_parameters ( &fxu,&hxu,(diag(diag(Qt))+1e-16*eye(4)), (diag(diag(Rt))+1e-3*eye(2))); |
|---|
| 139 | Edi.bayes(concat(dt,ut)); |
|---|
| 140 | |
|---|
| 141 | //LOG |
|---|
| 142 | L.logit(X_log, vec(x,4)); //vec from C-array |
|---|
| 143 | L.logit(Efix_log, Efix_ep.mean() ); |
|---|
| 144 | L.logit(Eop_log, Eop_ep.mean() ); |
|---|
| 145 | L.logit(Edi_log, Edi_ep.mean() ); |
|---|
| 146 | L.logit(Q_log, vec(Qt._data(),16) ); |
|---|
| 147 | L.logit(R_log, vec(Rt._data(),4) ); |
|---|
| 148 | L.logit(D_log, vec(KalmanObs,4) ); |
|---|
| 149 | L.logit(Du_log, dut ); |
|---|
| 150 | L.logit(Di_log, dit ); |
|---|
| 151 | |
|---|
| 152 | L.step(false); |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | L.step(true); |
|---|
| 156 | // L.itsave("sim_var.it"); |
|---|
| 157 | |
|---|
| 158 | |
|---|
| 159 | return 0; |
|---|
| 160 | } |
|---|