/*! \file \brief Models for synchronous electric drive using IT++ and BDM \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #include #include #include #include #include "pmsm.h" #include "simulator.h" #include using namespace itpp; //!Extended Kalman filter with unknown \c Q void set_simulator_t ( double &Ww ) { if ( t>0.0002 ) x[8]=1.2; // 1A //0.2ZP if ( t>0.4 ) x[8]=10.8; // 9A if ( t>0.6 ) x[8]=25.2; // 21A if ( t>0.7 ) Ww=2.*M_PI*10.; if ( t>1.0 ) x[8]=1.2; // 1A if ( t>1.2 ) x[8]=10.8; // 9A if ( t>1.4 ) x[8]=25.2; // 21A if ( t>1.6 ) Ww=2.*M_PI*50.; if ( t>1.9 ) x[8]=1.2; // 1A if ( t>2.1 ) x[8]=10.8; // 9A if ( t>2.3 ) x[8]=25.2; // 21A if ( t>2.5 ) Ww=2.*M_PI*100; if ( t>2.8 ) x[8]=1.2; // 1A if ( t>3.0 ) x[8]=10.8; // 9A if ( t>3.2 ) x[8]=25.2; // 21A if ( t>3.4 ) Ww=2.*M_PI*150; if ( t>3.7 ) x[8]=1.2; // 1A if ( t>3.9 ) x[8]=10.8; // 9A if ( t>4.1 ) x[8]=25.2; // 21A if ( t>4.3 ) Ww=2.*M_PI*0; if ( t>4.8 ) x[8]=-1.2; // 1A if ( t>5.0 ) x[8]=-10.8; // 9A if ( t>5.2 ) x[8]=-25.2; // 21A if ( t>5.4 ) Ww=2.*M_PI* ( -10. ); if ( t>5.7 ) x[8]=-1.2; // 1A if ( t>5.9 ) x[8]=-10.8; // 9A if ( t>6.1 ) x[8]=-25.2; // 21A if ( t>6.3 ) Ww=2.*M_PI* ( -50. ); if ( t>6.7 ) x[8]=-1.2; // 1A if ( t>6.9 ) x[8]=-10.8; // 9A if ( t>7.1 ) x[8]=-25.2; // 21A if ( t>7.3 ) Ww=2.*M_PI* ( -100. ); if ( t>7.7 ) x[8]=-1.2; // 1A if ( t>7.9 ) x[8]=-10.8; // 9A if ( t>8.1 ) x[8]=-25.2; // 21A if ( t>8.3 ) x[8]=10.8; // 9A if ( t>8.5 ) x[8]=25.2; // 21A x[8]=0.0; } int main() { // Kalman filter int Ndat = 90000; double h = 1e-6; int Nsimstep = 125; dirfilelog L("exp/sim_var",1000); //memlog L(Ndat); // SET SIMULATOR pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); double Ww = 0.0; vec dt ( 2 ); vec ut ( 2 ); vec xtm=zeros ( 4 ); vec xdif=zeros ( 4 ); vec xt ( 4 ); vec ddif=zeros(2); IMpmsm fxu; // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); OMpmsm hxu; mat Qt=zeros ( 4,4 ); mat Rt=zeros ( 2,2 ); // ESTIMATORS vec mu0= "0.0 0.0 0.0 0.0"; vec Qdiag ( "62 66 454 0.03" ); //zdenek: 0.01 0.01 0.0001 0.0001 vec Rdiag ( "100 100" ); //var(diff(xth)) = "0.034 0.034" mat Q =diag( Qdiag ); mat R =diag ( Rdiag ); EKFfull Efix ( rx,ry,ru ); Efix.set_est ( mu0, 1*eye ( 4 ) ); Efix.set_parameters ( &fxu,&hxu,Q,R); EKFfull Eop ( rx,ry,ru ); Eop.set_est ( mu0, 1*eye ( 4 ) ); Eop.set_parameters ( &fxu,&hxu,Q,R); EKFfull Edi ( rx,ry,ru ); Edi.set_est ( mu0, 1*eye ( 4 ) ); Edi.set_parameters ( &fxu,&hxu,Q,R); epdf& Efix_ep = Efix._epdf(); epdf& Eop_ep = Eop._epdf(); epdf& Edi_ep = Edi._epdf(); //LOG RV rQ("10", "{Q }", "16","0"); RV rR("11", "{R }", "4","0"); RV rUD("12 13 14 15", "{u_isa u_isb i_isa i_isb }", ones_i(4),zeros_i(4)); int X_log = L.add(rx,"X"); int Efix_log = L.add(rx,"XF"); int Eop_log = L.add(rx,"XO"); int Edi_log = L.add(rx,"XD"); int Q_log = L.add(rQ,"Q"); int R_log = L.add(rR,"R"); int D_log = L.add(rUD,"D"); L.init(); for ( int tK=1;tKpi ) xdif ( 3 )-=2*pi; if ( xdif ( 3 ) <-pi ) xdif ( 3 ) +=2*pi; ddif = hxu.eval(xtm,ut) - dt; //Rt = 0.9*Rt + xdif^2 Qt*=0.01; Qt += outer_product ( xdif,xdif ); //(x-xt)^2 Rt*=0.01; Rt += outer_product ( ddif,ddif ); //(x-xt)^2 //ESTIMATE Efix.bayes(concat(dt,ut)); // Eop.set_parameters ( &fxu,&hxu,(Qt+1e-16*eye(4)),(Rt+1e-3*eye(2))); Eop.bayes(concat(dt,ut)); // Edi.set_parameters ( &fxu,&hxu,(diag(diag(Qt))+1e-16*eye(4)), (diag(diag(Rt))+1e-3*eye(2))); Edi.bayes(concat(dt,ut)); //LOG L.logit(X_log, vec(x,4)); //vec from C-array L.logit(Efix_log, Efix_ep.mean() ); L.logit(Eop_log, Eop_ep.mean() ); L.logit(Edi_log, Edi_ep.mean() ); L.logit(Q_log, vec(Qt._data(),16) ); L.logit(R_log, vec(Rt._data(),4) ); L.logit(D_log, vec(KalmanObs,4) ); L.step(false); } L.step(true); //L.itsave("sim_var.it"); return 0; }