1 | /*! |
---|
2 | \file |
---|
3 | \brief Disturbances of PMSM model are fitted by an ARX model |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | \ingroup PMSM |
---|
7 | ----------------------------------- |
---|
8 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
9 | |
---|
10 | Using IT++ for numerical operations |
---|
11 | ----------------------------------- |
---|
12 | */ |
---|
13 | |
---|
14 | #include <itpp/itbase.h> |
---|
15 | #include <estim/arx.h> |
---|
16 | |
---|
17 | #include <stat/loggers.h> |
---|
18 | |
---|
19 | using namespace itpp; |
---|
20 | |
---|
21 | vec getPsi_a ( int t, mat &D, mat &Du , mat &X ); |
---|
22 | vec getPsi_b ( int t, mat &D, mat &Du , mat &X ); |
---|
23 | |
---|
24 | int main() { |
---|
25 | // Kalman filter |
---|
26 | int Ndat = 90000; |
---|
27 | mat D; |
---|
28 | mat Du; |
---|
29 | mat X; |
---|
30 | |
---|
31 | dirfilelog L ( "exp/sim_var_arx",1000 ); |
---|
32 | |
---|
33 | it_file itf ( "sim_var.it" ); |
---|
34 | itf >> Name ( "D" ) >> D; |
---|
35 | itf >> Name ( "Du" ) >> Du; |
---|
36 | itf >> Name ( "X" ) >> X; |
---|
37 | |
---|
38 | Array<std::string> Names = "{ia ib om dom r }"; |
---|
39 | int rglen = Names.length(); |
---|
40 | //Regressor |
---|
41 | RV rgr ( Names ); |
---|
42 | mat V0 = 0.0001*eye ( rglen ); V0 ( 0,0 ) =200; |
---|
43 | double nu0 = rglen+1; |
---|
44 | |
---|
45 | //Autoregressive model |
---|
46 | ARX Ar_a ( rgr,V0,nu0 ,0.95 ); |
---|
47 | ARX Ar_b ( rgr,V0,nu0 ,0.95 ); |
---|
48 | const epdf& pA= Ar_a._epdf(); |
---|
49 | const epdf& pB= Ar_b._epdf(); |
---|
50 | |
---|
51 | RV rta ( "{th_a }",vec_1 ( rglen ) ); |
---|
52 | RV rtb ( "{th_b }",vec_1 ( rglen ) ); |
---|
53 | int tha_log = L.add ( rta,"" ); |
---|
54 | int thb_log = L.add ( rtb,"" ); |
---|
55 | L.init(); |
---|
56 | |
---|
57 | vec Psi ( rglen ); |
---|
58 | vec Save ( 13 ); |
---|
59 | for ( int t=2; t<Ndat; t++ ) { |
---|
60 | Psi =getPsi_a ( t, D,Du ,X ); |
---|
61 | Ar_a.bayes ( Psi ); |
---|
62 | Psi =getPsi_b ( t, D,Du ,X ); |
---|
63 | Ar_b.bayes ( Psi ); |
---|
64 | |
---|
65 | Save = pA.mean(); |
---|
66 | L.logit ( tha_log, Save ); |
---|
67 | Save = pB.mean(); |
---|
68 | L.logit ( thb_log, Save ); |
---|
69 | L.step(); |
---|
70 | } |
---|
71 | L.finalize(); |
---|
72 | |
---|
73 | ivec bestind = Ar_a.structure_est ( egiw ( rgr,V0,nu0 ) ); |
---|
74 | ivec bestind2 = Ar_b.structure_est ( egiw ( rgr,V0,nu0 ) ); |
---|
75 | cout << bestind <<endl; |
---|
76 | cout << bestind2 <<endl; |
---|
77 | |
---|
78 | return 0; |
---|
79 | } |
---|
80 | |
---|
81 | vec getPsi_a ( int t, mat &D, mat &Du, mat &X ) { |
---|
82 | vec Psi ( 5 ); |
---|
83 | Psi ( 0 ) = D ( t,0 )-Du ( t,0 ); // a=0 |
---|
84 | |
---|
85 | Psi ( 1 ) = D ( t,2 ); |
---|
86 | Psi ( 2 ) = D(t,2)-D(t-1,2 ); |
---|
87 | Psi ( 3 ) = D(t,0)-D(t-1,0 ); |
---|
88 | Psi ( 4 ) = X ( t,2 ) - X ( t-1,2 ); |
---|
89 | |
---|
90 | return Psi; |
---|
91 | } |
---|
92 | |
---|
93 | vec getPsi_b ( int t, mat &D, mat &Du, mat &X ) { |
---|
94 | vec Psi ( 5 ); |
---|
95 | Psi ( 0 ) = D ( t,1 )-Du ( t,1 ); //b=1 |
---|
96 | |
---|
97 | Psi ( 1 ) = D(t,3); |
---|
98 | Psi ( 2 ) = D(t,3)-D(t-1,3 ); |
---|
99 | Psi ( 3 ) = D ( t,1 )-D(t-1,1); |
---|
100 | Psi ( 4 ) = X ( t,2 ) - X ( t-1,2 ); |
---|
101 | |
---|
102 | return Psi; |
---|
103 | } |
---|