[278] | 1 | /* |
---|
| 2 | Simulator of Vector Controlled PMSM Drive |
---|
| 3 | |
---|
| 4 | This module is background for PMSM drive object design and |
---|
| 5 | introduces basic functions ... set_parameters() and eval(). |
---|
| 6 | |
---|
| 7 | Z. Peroutka |
---|
| 8 | |
---|
| 9 | Rev. 16.3.2008 |
---|
| 10 | |
---|
| 11 | */ |
---|
| 12 | |
---|
| 13 | #define _USE_MATH_DEFINES |
---|
| 14 | |
---|
| 15 | #include <math.h> |
---|
| 16 | #include <stdlib.h> //na linuxu je abs v stdlib |
---|
| 17 | #include "regulace.h" |
---|
| 18 | #include "simulator.h" |
---|
| 19 | |
---|
| 20 | |
---|
| 21 | #define REZIM_REGULACE 1 // 0...reg. momentu, 1...reg.rychlosti, 2... Isqw=sqrt(Imax^2-Id^2) - max. moment |
---|
| 22 | |
---|
| 23 | void pmsmsim_set_parameters(double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0); |
---|
| 24 | void pmsmsim_step(double Ww); |
---|
| 25 | |
---|
| 26 | // local functions |
---|
| 27 | static void pwm(unsigned int mod); |
---|
| 28 | static double ubytek(double I); |
---|
| 29 | static void pmsm_model(unsigned int mod); |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | // simulator properties /////////////////////// |
---|
| 33 | static double Rs,Ls,Fmag,Bf,p,kp,J; // parameters of PMSM model |
---|
| 34 | static double Ucn,Uc,DT,U_modulace; // dc-link voltage and dead-time |
---|
| 35 | static double Urm_max; // field weakening |
---|
| 36 | static double h,h_reg,h_reg_real; // simulation step and sampling of employed loops |
---|
| 37 | unsigned int h_reg_counter,h_reg_counter_mez; // emulation of DSP operation |
---|
| 38 | |
---|
| 39 | static double va_char[16]={0,10,50,100,200,300,500,1000, 0,1,1.8,2.4,3.2,3.8,4.8,6.8}; // ubytky |
---|
| 40 | static unsigned int pocet=8; // velikost VA-charky |
---|
| 41 | |
---|
| 42 | // system state |
---|
| 43 | double x[9]; // (isx,isy,wme,theta_e,M,Fsd,Isd,Isq,Mz) |
---|
| 44 | |
---|
| 45 | // internal variables of PWM module |
---|
| 46 | static int smer, smer2, citac, citac2, citac_PR, modulace; |
---|
| 47 | |
---|
| 48 | // internal variables of PMSM model |
---|
| 49 | static double dIsx,dIsx1,dIsx2,dIsx3,dIsy,dIsy1,dIsy2,dIsy3; |
---|
| 50 | static double dTheta,dTheta1,dTheta2,dTheta3; |
---|
| 51 | static double dw,dw1,dw2,dw3; |
---|
| 52 | |
---|
| 53 | // system measures |
---|
| 54 | static double Isx, Isy, theta, speed; |
---|
| 55 | |
---|
| 56 | // control |
---|
| 57 | static double u[2]={0.,0.}; // format u={Um, beta} |
---|
| 58 | static double us[2]={0.,0.}; // format us={us_alfa, us_beta} |
---|
| 59 | |
---|
| 60 | // variables for calculation of mean values of stator voltage components |
---|
| 61 | static double usx_av=0., usy_av=0.,sum_usx_av=0.,sum_usy_av=0.; |
---|
| 62 | |
---|
| 63 | // variables for calculation of mean values of stator current components - (alfa, beta) |
---|
| 64 | static double isx_av=0., isy_av=0.,sum_isx_av=0.,sum_isy_av=0.; |
---|
| 65 | |
---|
| 66 | // stator voltage components filtering |
---|
| 67 | static double usxf=0.,usyf=0.,Tf=0.01; |
---|
| 68 | static unsigned int start_filter=1; |
---|
| 69 | |
---|
| 70 | // output for EKF (voltages and measured currents, which are fed to KalmanObs) |
---|
| 71 | double KalmanObs[10]={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}; // usx, usy, Isx, Isy, usx_av, usy_av |
---|
| 72 | |
---|
| 73 | // real-time |
---|
| 74 | double t=0.; //VS removed static due to clash with export in .h |
---|
| 75 | |
---|
| 76 | // stator voltage components in alfa beta (inluding impact of the real dc-link voltage) |
---|
| 77 | static double ualfa=0., ubeta=0.; |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | /////////////////// POMOCNE FUNKCE ////////////////////////////////// |
---|
| 81 | double uhel(double x, double y) |
---|
| 82 | { |
---|
| 83 | double th; |
---|
| 84 | |
---|
| 85 | if (x==0) |
---|
| 86 | if (y==0) th=0.; |
---|
| 87 | else if (y>0) th=M_PI/2.; |
---|
| 88 | else th=-M_PI/2.; |
---|
| 89 | else |
---|
| 90 | th=atan(y/x); |
---|
| 91 | |
---|
| 92 | if (x<0) th+=M_PI; |
---|
| 93 | |
---|
| 94 | return th; |
---|
| 95 | } |
---|
| 96 | ///////////////////////////////////////////////////////////////////// |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | void pmsmsim_set_parameters(double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0) |
---|
| 100 | { |
---|
| 101 | int tmp_i; |
---|
| 102 | |
---|
| 103 | // simulator parameters setup |
---|
| 104 | Rs=Rs0; |
---|
| 105 | Ls=Ls0; |
---|
| 106 | Fmag=Fmag0; |
---|
| 107 | Bf=Bf0; |
---|
| 108 | p=p0; |
---|
| 109 | kp=kp0; |
---|
| 110 | J=J0; |
---|
| 111 | Ucn=600.; |
---|
| 112 | Uc=Uc0; |
---|
| 113 | DT=DT0; |
---|
| 114 | |
---|
| 115 | // control setup |
---|
| 116 | Urm_max=0.95; |
---|
| 117 | |
---|
| 118 | // simulator sampling - fixed setup |
---|
| 119 | h=dt0; |
---|
| 120 | h_reg=125e-6; // fpwm = 4kHz |
---|
| 121 | h_reg_counter_mez=(int)(h_reg/h); // emulation of operation of DSP timer |
---|
| 122 | //h_reg_counter=h_reg_counter_mez; |
---|
| 123 | h_reg_counter=1; |
---|
| 124 | h_reg_real=h_reg_counter_mez*h; // real sampling period |
---|
| 125 | |
---|
| 126 | // reset of the system state variables |
---|
| 127 | for (tmp_i=0;tmp_i<9;tmp_i++) |
---|
| 128 | x[tmp_i]=0.; |
---|
| 129 | |
---|
| 130 | // emulation of the first measure |
---|
| 131 | Isx=0.;Isy=0.;theta=x[3];speed=x[2]; |
---|
| 132 | |
---|
| 133 | // === init of particular modules of simulator === |
---|
| 134 | // PWM init |
---|
| 135 | smer=-1; smer2=-1; |
---|
| 136 | citac=0; |
---|
| 137 | citac2=abs(0-(int)(DT/h)); //VS: oprava, je to spravne? |
---|
| 138 | citac_PR=h_reg_counter_mez; |
---|
| 139 | |
---|
| 140 | // first interrupt occur after first period match => add 1 to both counter registers |
---|
| 141 | citac++;smer=1; |
---|
| 142 | citac2--; |
---|
| 143 | |
---|
| 144 | modulace=1; // THIPWM |
---|
| 145 | if (modulace==1) |
---|
| 146 | U_modulace=Ucn/sqrt(3.); |
---|
| 147 | else |
---|
| 148 | U_modulace=Ucn/2.; |
---|
| 149 | |
---|
| 150 | // PMSM model init |
---|
| 151 | dIsx=0;dIsx1=0;dIsx2=0;dIsx3=0;dIsy=0;dIsy1=0;dIsy2=0;dIsy3=0; |
---|
| 152 | dTheta=0;dTheta1=0;dTheta2=0;dTheta3=0; |
---|
| 153 | dw=0;dw1=0;dw2=0;dw3=0; |
---|
| 154 | |
---|
| 155 | init_regulace(Ls,Fmag,kp,p,h_reg_real); |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | static void pwm(unsigned int mod) |
---|
| 160 | // mod ... mod=0 - sinusoidal PWM; mod=1 - PWM with injected 3rd harmonic |
---|
| 161 | { |
---|
| 162 | unsigned int i; |
---|
| 163 | double iabc[3], ur[3],ustr[3],ua,ub,uc; |
---|
| 164 | double dtr[3],dd[3]; |
---|
| 165 | double Um, beta; |
---|
| 166 | double U3; |
---|
| 167 | double up, up2; |
---|
| 168 | |
---|
| 169 | Um=*u; |
---|
| 170 | beta=*(u+1); |
---|
| 171 | |
---|
| 172 | // emulation of carrier - timer |
---|
| 173 | up=((double)citac/citac_PR-0.5)*Ucn; |
---|
| 174 | up2=((double)citac2/citac_PR-0.5)*Ucn; |
---|
| 175 | |
---|
| 176 | iabc[0]=*x; |
---|
| 177 | iabc[1]=(-*x+sqrt(3.)**(x+1))/2.; |
---|
| 178 | iabc[2]=(-*x-sqrt(3.)**(x+1))/2.; |
---|
| 179 | |
---|
| 180 | if (mod==0) // sin. PWM |
---|
| 181 | { |
---|
| 182 | ur[0]=Um*cos(beta); |
---|
| 183 | ur[1]=Um*cos(beta-2./3.*M_PI); |
---|
| 184 | ur[2]=Um*cos(beta+2./3.*M_PI); |
---|
| 185 | } |
---|
| 186 | else // PWM with injected 3rd harmonic |
---|
| 187 | { |
---|
| 188 | U3=0.17*cos(3.*beta); |
---|
| 189 | ur[0]=Um*(cos(beta)-U3); |
---|
| 190 | ur[1]=Um*(cos(beta-2./3.*M_PI)-U3); |
---|
| 191 | ur[2]=Um*(cos(beta+2./3.*M_PI)-U3); |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | for (i=0;i<3;i++) |
---|
| 195 | { dtr[i]=ubytek(fabs(iabc[i])); |
---|
| 196 | dd[i]=dtr[i]*.73; |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | // implementation of voltage drops and dead-times |
---|
| 200 | for (i=0;i<3;i++) |
---|
| 201 | if (iabc[i]>=0) |
---|
| 202 | if ((ur[i]>up) && (ur[i]>up2)) |
---|
| 203 | ustr[i]=Uc/2-dtr[i]; |
---|
| 204 | else |
---|
| 205 | ustr[i]=-(Uc/2+dd[i]); |
---|
| 206 | else |
---|
| 207 | if ((ur[i]<up) && (ur[i]<up2)) |
---|
| 208 | ustr[i]=-(Uc/2-dtr[i]); |
---|
| 209 | else |
---|
| 210 | ustr[i]=Uc/2+dd[i]; |
---|
| 211 | |
---|
| 212 | // phase voltages |
---|
| 213 | ua=(2.*ustr[0]-ustr[1]-ustr[2])/3.; |
---|
| 214 | ub=(2.*ustr[1]-ustr[0]-ustr[2])/3.; |
---|
| 215 | uc=(2.*ustr[2]-ustr[0]-ustr[1])/3.; |
---|
| 216 | |
---|
| 217 | // voltage vector in stationary reference frame (x,y) |
---|
| 218 | *us=(2.*ua-ub-uc)/3.; |
---|
| 219 | *(us+1)=(ub-uc)/sqrt(3.); |
---|
| 220 | |
---|
| 221 | // emulation of DSP timers |
---|
| 222 | if ((citac==citac_PR)||(citac==0)) |
---|
| 223 | { |
---|
| 224 | smer*=-1; |
---|
| 225 | // calculation of stator voltage components mean values |
---|
| 226 | usx_av=h/h_reg*sum_usx_av; |
---|
| 227 | usy_av=h/h_reg*sum_usy_av; |
---|
| 228 | // reset of sum accumulators |
---|
| 229 | sum_usx_av=0.; |
---|
| 230 | sum_usy_av=0.; |
---|
| 231 | |
---|
| 232 | // stator current components mean values - reference frame (alfa, beta) |
---|
| 233 | isx_av=h/h_reg*sum_isx_av; |
---|
| 234 | isy_av=h/h_reg*sum_isy_av; |
---|
| 235 | // reset of sum accumulators |
---|
| 236 | sum_isx_av=0.; |
---|
| 237 | sum_isy_av=0.; |
---|
| 238 | } |
---|
| 239 | if ((citac2==citac_PR)||(citac2==0)) smer2*=-1; |
---|
| 240 | citac+=smer; |
---|
| 241 | citac2+=smer2; |
---|
| 242 | |
---|
| 243 | // calculation of stator voltage components mean values - sum |
---|
| 244 | sum_usx_av+=*us; |
---|
| 245 | sum_usy_av+=*(us+1); |
---|
| 246 | |
---|
| 247 | // stator voltage components filtering |
---|
| 248 | //if (start_filter==1) |
---|
| 249 | usxf+=(*us-usxf)*h/h_reg; |
---|
| 250 | usyf+=(*(us+1)-usyf)*h/h_reg; |
---|
| 251 | |
---|
| 252 | // stator current components mean values - reference frame (alfa, beta) |
---|
| 253 | sum_isx_av+=*x; |
---|
| 254 | sum_isy_av+=*(x+1); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | static double ubytek(double I) |
---|
| 258 | { |
---|
| 259 | unsigned int ii; |
---|
| 260 | double delta_u; |
---|
| 261 | |
---|
| 262 | ii=0; |
---|
| 263 | while ((*(va_char+ii)<I) && (ii<(pocet-1))) |
---|
| 264 | ii++; |
---|
| 265 | |
---|
| 266 | if (ii==(pocet-1)) |
---|
| 267 | delta_u=*(va_char+ii+pocet); |
---|
| 268 | else |
---|
| 269 | if (ii==0) |
---|
| 270 | delta_u=0; |
---|
| 271 | else |
---|
| 272 | delta_u=*(va_char+ii-1+pocet)+(I-*(va_char+ii-1))/(*(va_char+ii)-*(va_char+ii-1))*(*(va_char+ii+pocet)-*(va_char+ii-1+pocet)); |
---|
| 273 | |
---|
| 274 | return delta_u; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | static void pmsm_model(unsigned int mod) |
---|
| 279 | // mod<5...Euler, mod>4 ... Adams of 4th order |
---|
| 280 | { |
---|
| 281 | double usx, usy; |
---|
| 282 | |
---|
| 283 | usx=*us; |
---|
| 284 | usy=*(us+1); |
---|
| 285 | |
---|
| 286 | dIsx=-Rs/Ls*x[0]+Fmag/Ls*x[2]*sin(x[3])+usx/Ls; |
---|
| 287 | dIsy=-Rs/Ls*x[1]-Fmag/Ls*x[2]*cos(x[3])+usy/Ls; |
---|
| 288 | dTheta=x[2]; |
---|
| 289 | |
---|
| 290 | if (J>0) |
---|
| 291 | dw=kp*p*p*Fmag/J*(x[1]*cos(x[3])-x[0]*sin(x[3]))-Bf/J*x[2]-p/J*x[8]; |
---|
| 292 | else |
---|
| 293 | dw=0; |
---|
| 294 | |
---|
| 295 | // integration |
---|
| 296 | if (mod<5) // Euler |
---|
| 297 | { x[0]+=dIsx*h; |
---|
| 298 | x[1]+=dIsy*h; |
---|
| 299 | x[2]+=dw*h; |
---|
| 300 | x[3]+=dTheta*h; |
---|
| 301 | } |
---|
| 302 | else // Adams (4th order) |
---|
| 303 | { x[0]+=h/24.*(55.*dIsx-59.*dIsx1+37.*dIsx2-9.*dIsx3); |
---|
| 304 | x[1]+=h/24.*(55.*dIsy-59.*dIsy1+37.*dIsy2-9.*dIsy3); |
---|
| 305 | x[2]+=h/24.*(55.*dw-59.*dw1+37.*dw2-9.*dw3); |
---|
| 306 | x[3]+=h/24.*(55.*dTheta-59.*dTheta1+37.*dTheta2-9.*dTheta3); |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | // saturation of theta to (-pi,pi) |
---|
| 310 | if (x[3]>M_PI) x[3]-=(2*M_PI); |
---|
| 311 | if (x[3]<-M_PI) x[3]+=(2*M_PI); |
---|
| 312 | |
---|
| 313 | // diff. shift - Adams |
---|
| 314 | dIsx3=dIsx2;dIsx2=dIsx1;dIsx1=dIsx; |
---|
| 315 | dIsy3=dIsy2;dIsy2=dIsy1;dIsy1=dIsy; |
---|
| 316 | dTheta3=dTheta2;dTheta2=dTheta1;dTheta1=dTheta; |
---|
| 317 | dw3=dw2;dw2=dw1;dw1=dw; |
---|
| 318 | |
---|
| 319 | // calculation of Isd, Isq |
---|
| 320 | x[6]=x[0]*cos(x[3])+x[1]*sin(x[3]); // Isd |
---|
| 321 | x[7]=x[1]*cos(x[3])-x[0]*sin(x[3]); // Isq |
---|
| 322 | |
---|
| 323 | // Fsd ... d-component of stator flux |
---|
| 324 | x[5]=Ls*x[6]+Fmag; |
---|
| 325 | |
---|
| 326 | // Torque |
---|
| 327 | x[4]=kp*p*Fmag*(x[1]*cos(x[3])-x[0]*sin(x[3])); |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | ////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 331 | void pmsmsim_step(double Ww) // you must link array KalmanObs[] to EKF modul |
---|
| 332 | { |
---|
| 333 | double Umk, ub, uc; |
---|
| 334 | |
---|
| 335 | // while (t<=t_end) |
---|
| 336 | { |
---|
| 337 | pwm(modulace); |
---|
| 338 | // *us=KalmanObs[0]; *(us+1)=KalmanObs[1]; |
---|
| 339 | // *us=ualfa; *(us+1)=ubeta; |
---|
| 340 | pmsm_model(5); |
---|
| 341 | |
---|
| 342 | if (h_reg_counter>=h_reg_counter_mez) // pocatek ISR |
---|
| 343 | { |
---|
| 344 | // voltages and measured currents for EKF |
---|
| 345 | // Umk=*u*Uc/Ucn; |
---|
| 346 | // ualfa=Umk*cos(*(u+1)); |
---|
| 347 | // ub=Umk*cos(*(u+1)-2./3.*M_PI); |
---|
| 348 | KalmanObs[0]=ualfa; // usx |
---|
| 349 | //KalmanObs[1]=(ualfa+2.*ub)/sqrt(3.); // usy |
---|
| 350 | KalmanObs[1]=ubeta; // usy |
---|
| 351 | |
---|
| 352 | // real sampling - considered transport delay equal to the sampling period |
---|
| 353 | /* KalmanObs[2]=Isx; |
---|
| 354 | KalmanObs[3]=Isy;*/ |
---|
| 355 | // ideal sampling |
---|
| 356 | KalmanObs[2]=x[0]; |
---|
| 357 | KalmanObs[3]=x[1]; |
---|
| 358 | |
---|
| 359 | // diagnostic - mean values of stator voltage components - pwm() |
---|
| 360 | KalmanObs[4]=usx_av; |
---|
| 361 | KalmanObs[5]=usy_av; |
---|
| 362 | KalmanObs[6]=usxf; |
---|
| 363 | KalmanObs[7]=usyf; |
---|
| 364 | KalmanObs[8]=isx_av; |
---|
| 365 | KalmanObs[9]=isy_av; |
---|
| 366 | |
---|
| 367 | vektor_regulace(0,0,Urm_max,Ww,u,Isx,Isy,theta,speed,U_modulace,Uc,Ucn,REZIM_REGULACE); // rezim=1 ... reg. rychlosti, rezim=0 ... reg. momentu |
---|
| 368 | // rezim=2 ... Iqw=sqrt(Imax^2-Idw^2) |
---|
| 369 | // emulation of the real sampling of A/D converter |
---|
| 370 | Isx=x[0];Isy=x[1];speed=x[2];theta=x[3]; |
---|
| 371 | |
---|
| 372 | // include ideal commanded stator voltage |
---|
| 373 | Umk=*u*Uc/Ucn; |
---|
| 374 | ualfa=Umk*cos(*(u+1)); // usx = usa |
---|
| 375 | ub=Umk*cos(*(u+1)-2./3.*M_PI); |
---|
| 376 | ubeta=(ualfa+2.*ub)/sqrt(3.); // usy |
---|
| 377 | // uc=-ualfa-ub; |
---|
| 378 | // ubeta=(ub-uc)/sqrt(3.); |
---|
| 379 | |
---|
| 380 | h_reg_counter=0; |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | t+=h; |
---|
| 384 | h_reg_counter++; |
---|
| 385 | } |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | void pmsmsim_noreg_step(double ua, double ub) // you must link array KalmanObs[] to EKF modul |
---|
| 389 | { |
---|
| 390 | double kor_Uc; |
---|
| 391 | |
---|
| 392 | *u=sqrt(ua*ua+ub*ub); |
---|
| 393 | *(u+1)=uhel(ua,ub); |
---|
| 394 | |
---|
| 395 | // uprava velikosti vzhledem k Uc!=Ucn |
---|
| 396 | kor_Uc=Ucn/230.; |
---|
| 397 | *u*=kor_Uc; /**/ |
---|
| 398 | |
---|
| 399 | pwm(modulace); |
---|
| 400 | |
---|
| 401 | // *us=*u*cos(*(u+1)); |
---|
| 402 | // *(us+1)=*u*sin(*(u+1));; |
---|
| 403 | |
---|
| 404 | pmsm_model(5); |
---|
| 405 | } |
---|
| 406 | ////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 407 | ////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|