Revision 211, 1.3 kB
(checked in by smidl, 16 years ago)
|
prejmenovani evalpdflog a evalcond
|
Line | |
---|
1 | #include <estim/arx.h> |
---|
2 | #include <stat/libEF.h> |
---|
3 | using namespace itpp; |
---|
4 | |
---|
5 | //These lines are needed for use of cout and endl |
---|
6 | using std::cout; |
---|
7 | using std::endl; |
---|
8 | |
---|
9 | int main() { |
---|
10 | // Setup model : ARX for 1D Gaussian |
---|
11 | //Test constructor |
---|
12 | mat V0 = 0.00001*eye(2); V0(0,0)= 0.1; // |
---|
13 | RV thr("{th r }"); |
---|
14 | ARX Ar(thr, V0, -1.0); |
---|
15 | |
---|
16 | mat mu(1,1); |
---|
17 | mat R(1,1); |
---|
18 | Ar._e()->mean_mat(mu,R); |
---|
19 | cout << "Prior moments: mu="<< mu << ", R=" << R <<endl; |
---|
20 | |
---|
21 | int ndat = 200; |
---|
22 | vec smp=randn(ndat); |
---|
23 | // |
---|
24 | mat Smp=ones(2,ndat); |
---|
25 | Smp.set_row(0,smp); |
---|
26 | // |
---|
27 | Ar.bayesB(Smp); |
---|
28 | // Ar is now filled with estimates of N(0,1); |
---|
29 | cout << "Empirical moments: mu=" << sum(smp)/ndat << ", R=" << sum_sqr(smp)/ndat - pow(sum(smp)/ndat,2) << endl; |
---|
30 | Ar._e()->mean_mat(mu,R); |
---|
31 | cout << "Posterior moments: mu="<< mu << ", R=" << R <<endl; |
---|
32 | |
---|
33 | //////// TEST prediction |
---|
34 | vec x=linspace(-3.0,3.0,100); |
---|
35 | double xstep = 6.0/100.0; |
---|
36 | mat X(1,100); |
---|
37 | mat X2(2,100); |
---|
38 | X.set_row(0,x); |
---|
39 | X2.set_row(0,x); |
---|
40 | |
---|
41 | mlstudent* Ap = Ar.predictor_student(RV("{y }"),RV("{1 }")); |
---|
42 | vec Ap_x=Ap->evallogcond_m(X,vec_1(1.0)); |
---|
43 | vec ll_x = Ar.logpred_m(X2); |
---|
44 | |
---|
45 | cout << "normalize : " << xstep*sum(Ap_x) << endl; |
---|
46 | cout << "normalize : " << xstep*sum(exp(ll_x)) << endl; |
---|
47 | |
---|
48 | it_file it("arx_elem_test.it"); |
---|
49 | it << Name("Ap_x") << Ap_x; |
---|
50 | it << Name("ll_x") << ll_x; |
---|
51 | } |
---|