[263] | 1 | /*! |
---|
| 2 | \file |
---|
| 3 | \brief Test of basic elements of the ARX class |
---|
| 4 | |
---|
| 5 | See file \ref arx for mathematical background. |
---|
| 6 | |
---|
| 7 | This class tests functions ARX::bayes (Bayes rule) ARX::structure_est and ARX::predictor_student |
---|
| 8 | |
---|
| 9 | Untested functions: none. |
---|
| 10 | |
---|
| 11 | */ |
---|
| 12 | |
---|
[100] | 13 | #include <estim/arx.h> |
---|
[254] | 14 | using namespace bdm; |
---|
[100] | 15 | |
---|
| 16 | int main() { |
---|
| 17 | // Setup model |
---|
[263] | 18 | vec th ( "0.8 -0.3 0.4 0.01" ); |
---|
| 19 | int ord=th.length(); //auxiliary variable |
---|
[170] | 20 | double sqr=0.1; |
---|
[263] | 21 | |
---|
[100] | 22 | //Test constructor |
---|
[263] | 23 | mat V0 = 0.00001*eye ( ord+1 ); V0 ( 0.0 ) = 1; // |
---|
| 24 | double nu0 = ord+5.0; |
---|
| 25 | |
---|
[270] | 26 | ARX Ar; |
---|
| 27 | Ar.set_statistics(1, V0, nu0 ); // Estimator |
---|
[263] | 28 | const epdf& f_thr = Ar._epdf(); // refrence to posterior of the estimator |
---|
| 29 | |
---|
[100] | 30 | //Test estimation |
---|
[263] | 31 | int ndat = 100; // number of data records |
---|
| 32 | vec Yt ( ndat ); // Store generated data |
---|
| 33 | Yt.set_subvector ( 0,randn ( ord ) ); //initial values |
---|
| 34 | vec rgr ( ord ); // regressor |
---|
| 35 | vec Psi ( ord+1 ); // extended regressor |
---|
| 36 | |
---|
| 37 | //print moments of the prior distribution |
---|
| 38 | cout << "prior mean: " << f_thr.mean() <<endl; |
---|
| 39 | cout << "prior variance: " << f_thr.variance() <<endl; |
---|
| 40 | |
---|
| 41 | // cycle over time: |
---|
| 42 | for ( int t=ord; t<ndat; t++ ) { |
---|
| 43 | //Generate regressor |
---|
| 44 | for ( int j=0;j< ( ord );j++ ) {rgr ( j ) =Yt ( t-j-1 );} |
---|
| 45 | //model |
---|
| 46 | Yt ( t ) = th*rgr + sqr * NorRNG(); |
---|
| 47 | |
---|
| 48 | Psi = concat ( Yt ( t ), rgr ); // Inefficient! Used for compatibility with Matlab! |
---|
| 49 | Ar.bayes ( Psi ); // Bayes rule |
---|
| 50 | |
---|
| 51 | // Build predictor |
---|
[270] | 52 | mlstudent* Pr = Ar.predictor_student ( ); |
---|
[263] | 53 | // Test similarity of likelihoods from the Bayes rule and the predictor |
---|
| 54 | cout << "BR log-lik: " << Ar._ll(); |
---|
| 55 | cout <<" , predictor ll: " << Pr->evallogcond ( vec_1 ( Yt ( t ) ),rgr ) <<endl; |
---|
[198] | 56 | delete Pr; |
---|
[100] | 57 | } |
---|
[263] | 58 | //print posterior moments |
---|
| 59 | cout << "posterior mean: " << f_thr.mean() <<endl; |
---|
| 60 | cout << "posterior variance: " << f_thr.variance() <<endl; |
---|
| 61 | |
---|
| 62 | // Test brute-froce structure estimation |
---|
[100] | 63 | |
---|
[263] | 64 | cout << "Structure estimation: " <<endl; |
---|
[270] | 65 | cout <<Ar.structure_est ( egiw ( 1,V0,nu0 ) ) <<endl; |
---|
[100] | 66 | } |
---|