[179] | 1 | #include <stat/libEF.h> |
---|
| 2 | #include <stat/emix.h> |
---|
| 3 | using namespace itpp; |
---|
| 4 | |
---|
| 5 | //These lines are needed for use of cout and endl |
---|
| 6 | using std::cout; |
---|
| 7 | using std::endl; |
---|
| 8 | |
---|
| 9 | double normcoef ( const epdf* ep,const vec &xb, const vec &yb, int Ngr=100 ) { |
---|
| 10 | mat PPdf ( Ngr+1,Ngr+1 ); |
---|
| 11 | vec rgr ( 2 ); |
---|
| 12 | |
---|
| 13 | int i=0,j=0; |
---|
| 14 | double xstep= ( xb ( 1 )-xb ( 0 ) ) /Ngr; |
---|
| 15 | double ystep= ( yb ( 1 )-yb ( 0 ) ) /Ngr; |
---|
| 16 | |
---|
| 17 | for ( double x=xb ( 0 );x<=xb ( 1 );x+= xstep,i++ ) { |
---|
| 18 | rgr ( 0 ) =x;j=0; |
---|
| 19 | for ( double y=yb ( 0 );y<=yb ( 1 );y+=ystep,j++ ) { |
---|
| 20 | rgr ( 1 ) =y; |
---|
| 21 | PPdf ( i,j ) =exp ( ep->evalpdflog ( rgr ) ); |
---|
| 22 | } |
---|
| 23 | } |
---|
| 24 | return sumsum ( PPdf ) *xstep*ystep; |
---|
| 25 | } |
---|
| 26 | |
---|
| 27 | int main() { |
---|
| 28 | RNG_randomize(); |
---|
| 29 | |
---|
| 30 | cout << "Testing enorm(2,2)"<<endl; |
---|
| 31 | // Setup model |
---|
| 32 | vec mu ( "1.1 -1" ); |
---|
| 33 | ldmat R ( mat ( "1 -0.5; -0.5 2" ) ); |
---|
| 34 | |
---|
| 35 | RV x ( "{x }" ); |
---|
| 36 | RV y ( "{y }" ); |
---|
| 37 | |
---|
| 38 | enorm<ldmat> E ( concat ( x,y ) ); |
---|
| 39 | E.set_parameters ( mu,R ); |
---|
| 40 | cout << "enorm mean value:" << E.mean() <<endl; |
---|
| 41 | cout << "enorm mean variance:" << R.to_mat() <<endl; |
---|
| 42 | cout << "enorm normalizing constant:" << E.lognc() <<endl; |
---|
| 43 | cout << " Numerically integrates to [1.0]: " << normcoef ( &E, vec ( "-5 5" ), vec ( "-5 5" ) ) << endl; |
---|
| 44 | |
---|
| 45 | int N=1000; |
---|
| 46 | vec ll ( N ); |
---|
| 47 | mat Smp=E.sample ( 1000 ); |
---|
| 48 | vec Emu = sum ( Smp,2 ) /N; |
---|
| 49 | mat Er = ( Smp*Smp.transpose() ) /N - outer_product ( Emu,Emu ); |
---|
| 50 | |
---|
| 51 | cout << "original empirical mean: " <<Emu <<endl; |
---|
| 52 | cout << "original empirical variance: " <<Er <<endl; |
---|
| 53 | |
---|
| 54 | enorm<ldmat>* Mg = E.marginal ( y ); |
---|
| 55 | mlnorm<ldmat>* Cn = E.condition ( x ); |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | cout<< "marginal mean: " << Mg->mean() <<endl; |
---|
| 59 | |
---|
| 60 | cout << "========== putting them back together ======= "<<endl; |
---|
| 61 | mepdf mMg ( *Mg ); |
---|
| 62 | Array<mpdf*> A ( 2 ); |
---|
| 63 | A ( 0 ) = Cn; |
---|
| 64 | A ( 1 ) = &mMg; |
---|
| 65 | mprod mEp ( A ); |
---|
| 66 | |
---|
| 67 | Smp=mEp.samplecond ( vec ( 0 ),ll,1000 ); |
---|
| 68 | Emu = sum ( Smp,2 ) /N; |
---|
| 69 | Er = ( Smp*Smp.transpose() ) /N - outer_product ( Emu,Emu ); |
---|
| 70 | |
---|
| 71 | cout << "composite mean: " <<Emu <<endl; |
---|
| 72 | cout << "composite variance: " <<Er <<endl; |
---|
| 73 | } |
---|