1 | #ifndef PMSM_H |
---|
2 | #define PMSM_H |
---|
3 | |
---|
4 | RV rx ( "1 2 3 4", "{ia, ib, om, th}", ones_i ( 4 ), zeros_i ( 4 )); |
---|
5 | RV ru ( "5 6", "{ua, ub}", ones_i ( 2 ) ,zeros_i ( 2 )); |
---|
6 | RV ry ( "7 8", "{oia, oib}", ones_i ( 2 ) ,zeros_i ( 2 )); |
---|
7 | |
---|
8 | //! State evolution model for a PMSM drive and its derivative with respect to $x$ |
---|
9 | class IMpmsm : public diffbifn { |
---|
10 | double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
---|
11 | |
---|
12 | //TODO hardcoded RVs!!! |
---|
13 | public: |
---|
14 | IMpmsm() :diffbifn ( rx, ru ) {}; |
---|
15 | //! Set mechanical and electrical variables |
---|
16 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0;} |
---|
17 | |
---|
18 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
19 | // last state |
---|
20 | double iam = x0 ( 0 ); |
---|
21 | double ibm = x0 ( 1 ); |
---|
22 | double omm = x0 ( 2 ); |
---|
23 | double thm = x0 ( 3 ); |
---|
24 | double uam = u0 ( 0 ); |
---|
25 | double ubm = u0 ( 1 ); |
---|
26 | |
---|
27 | vec xk=zeros ( 4 ); |
---|
28 | //ia |
---|
29 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + uam*dt/Ls; |
---|
30 | //ib |
---|
31 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + ubm*dt/Ls; |
---|
32 | //om |
---|
33 | xk ( 2 ) = omm + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ) - p/J*dt*Mz; |
---|
34 | //th |
---|
35 | xk ( 3 ) = rem(thm + omm*dt,2*pi); |
---|
36 | return xk; |
---|
37 | } |
---|
38 | |
---|
39 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
40 | double iam = x0 ( 0 ); |
---|
41 | double ibm = x0 ( 1 ); |
---|
42 | double omm = x0 ( 2 ); |
---|
43 | double thm = x0 ( 3 ); |
---|
44 | // d ia |
---|
45 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
---|
46 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
---|
47 | // d ib |
---|
48 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
---|
49 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
---|
50 | // d om |
---|
51 | A ( 2,0 ) = kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
---|
52 | A ( 2,1 ) = kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
---|
53 | A ( 2,2 ) = 1.0; |
---|
54 | A ( 2,3 ) = kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
---|
55 | // d th |
---|
56 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
---|
57 | } |
---|
58 | |
---|
59 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
---|
60 | |
---|
61 | }; |
---|
62 | |
---|
63 | //! Observation model for PMSM drive and its derivative with respect to $x$ |
---|
64 | class OMpmsm: public diffbifn { |
---|
65 | public: |
---|
66 | OMpmsm() :diffbifn ( rx,ru ) {}; |
---|
67 | |
---|
68 | vec eval ( const vec &x0, const vec &u0 ) { |
---|
69 | vec y ( 2 ); |
---|
70 | y ( 0 ) = x0 ( 0 ); |
---|
71 | y ( 1 ) = x0 ( 1 ); |
---|
72 | return y; |
---|
73 | } |
---|
74 | |
---|
75 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
---|
76 | A.clear(); |
---|
77 | A ( 0,0 ) = 1.0; |
---|
78 | A ( 1,1 ) = 1.0; |
---|
79 | } |
---|
80 | }; |
---|
81 | |
---|
82 | #endif //PMSM_H |
---|