/* \file \brief Models for synchronous electric drive using IT++ and BDM \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #include #include #include #include #include "pmsm.h" #include "simulator.h" using namespace itpp; //!Extended Kalman filter with unknown \c Q class EKF_unQ : public EKFCh , public BMcond { public: //! Default constructor EKF_unQ ( RV rx, RV ry,RV ru,RV rQ ) :EKFCh ( rx,ry,ru ),BMcond ( rQ ) {}; void condition ( const vec &Q0 ) { Q.setD ( Q0,0 ); //from EKF preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); }; }; int main() { // Kalman filter int Ndat = 10000; double h = 1e-6; int Nsimstep = 125; int Npart = 100; // internal model IMpmsm fxu; // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); // observation model OMpmsm hxu; vec mu0= "0.0 0.0 0.0 0.0"; vec Qdiag ( "0.05 0.05 0.001 0.001" ); //zdenek: 0.05 0.05 0.001 0.001 vec Rdiag ( "0.03 0.03" ); //var(diff(xth)) = "0.034 0.034" chmat Q ( Qdiag ); chmat R ( Rdiag ); EKFCh KFE ( rx,ry,ru ); KFE.set_parameters ( &fxu,&hxu,Q,R ); KFE.set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); RV rQ ( "100","{Q}","4","0" ); EKF_unQ KFEp ( rx,ry,ru,rQ ); KFEp.set_parameters ( &fxu,&hxu,Q,R ); KFEp.set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); mgamma evolQ ( rQ,rQ ); MPF M ( rx,rQ,evolQ,evolQ,Npart,KFEp ); // initialize evolQ.set_parameters ( 100.0 ); //sigma = 1/10 mu evolQ.condition ( "0.05 0.05 0.001 0.001" ); //Zdenek default epdf& pfinit=evolQ._epdf(); M.set_est ( pfinit ); evolQ.set_parameters ( 1000.0 ); // epdf& KFEep = KFE._epdf(); epdf& Mep = M._epdf(); mat Xt=zeros ( 9,Ndat ); //true state from simulator mat Dt=zeros ( 4,Ndat ); //observation mat XtE=zeros ( 4,Ndat ); mat XtM=zeros ( 8,Ndat ); //Q + x // SET SIMULATOR pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); double Ww=0.0; static int k_rampa=1; static long k_rampa_tmp=0; vec dt ( 2 ); vec dtVS =zeros( 2 ); vec xtVS =zeros(4); vec et ( 4 ); vec wt ( 2 ); vec ut ( 2 ); mat XtV=zeros ( 4,Ndat ); for ( int tK=1;tK2.*M_PI*150. ) { Ww=2.*M_PI*150.; if ( k_rampa_tmp<500000 ) k_rampa_tmp++; else {k_rampa=-1;k_rampa_tmp=0;} }; if ( Ww<-2.*M_PI*150. ) Ww=-2.*M_PI*150.; /* */ pmsmsim_step ( Ww ); }; // collect data ut ( 0 ) = KalmanObs[0]; ut ( 1 ) = KalmanObs[1]; dt ( 0 ) = KalmanObs[2]; dt ( 1 ) = KalmanObs[3]; // My own simulator for testing : Asuming ut is OK NorRNG.sample_vector ( 4,et ); NorRNG.sample_vector ( 2,wt ); xtVS = fxu.eval ( xtVS,ut ) + Q.sqrt_mult ( et ); dtVS = hxu.eval ( xtVS,ut ) + R.sqrt_mult ( wt ); //estimator KFE.bayes ( concat ( dt,ut ) ); M.bayes ( concat ( dt,ut ) ); Xt.set_col ( tK,vec ( x,9 ) ); //vec from C-array Dt.set_col ( tK, concat ( dt,ut ) ); XtE.set_col ( tK,KFEep.mean() ); XtM.set_col ( tK,Mep.mean() ); XtV.set_col ( tK,xtVS ); } it_file fou ( "pmsm_sim.it" ); fou << Name ( "xth" ) << Xt; fou << Name ( "Dt" ) << Dt; fou << Name ( "xthE" ) << XtE; fou << Name ( "xthM" ) << XtM; fou << Name ( "xthV" ) << XtV; //Exit program: return 0; }