1 | /* |
---|
2 | \file |
---|
3 | \brief Models for synchronous electric drive using IT++ and BDM |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #include <itpp/itbase.h> |
---|
14 | #include <estim/libKF.h> |
---|
15 | #include <estim/libPF.h> |
---|
16 | #include <stat/libFN.h> |
---|
17 | |
---|
18 | #include "pmsm.h" |
---|
19 | #include "simulator.h" |
---|
20 | |
---|
21 | using namespace itpp; |
---|
22 | //!Extended Kalman filter with unknown \c Q |
---|
23 | class EKF_unQ : public EKFCh , public BMcond { |
---|
24 | public: |
---|
25 | //! Default constructor |
---|
26 | EKF_unQ ( RV rx, RV ry,RV ru,RV rQ ) :EKFCh ( rx,ry,ru ),BMcond ( rQ ) {}; |
---|
27 | void condition ( const vec &Q0 ) { |
---|
28 | Q.setD ( Q0,0 ); |
---|
29 | //from EKF |
---|
30 | preA.set_submatrix ( dimy+dimx,dimy,Q._Ch() ); |
---|
31 | }; |
---|
32 | }; |
---|
33 | |
---|
34 | |
---|
35 | int main() { |
---|
36 | // Kalman filter |
---|
37 | int Ndat = 10000; |
---|
38 | double h = 1e-6; |
---|
39 | int Nsimstep = 125; |
---|
40 | int Npart = 100; |
---|
41 | |
---|
42 | // internal model |
---|
43 | IMpmsm fxu; |
---|
44 | // Rs Ls dt Fmag(Ypm) kp p J Bf(Mz) |
---|
45 | fxu.set_parameters ( 0.28, 0.003465, Nsimstep*h, 0.1989, 1.5 ,4.0, 0.04, 0.0 ); |
---|
46 | // observation model |
---|
47 | OMpmsm hxu; |
---|
48 | |
---|
49 | vec mu0= "0.0 0.0 0.0 0.0"; |
---|
50 | vec Qdiag ( "0.05 0.05 0.001 0.001" ); //zdenek: 0.05 0.05 0.001 0.001 |
---|
51 | vec Rdiag ( "0.03 0.03" ); //var(diff(xth)) = "0.034 0.034" |
---|
52 | chmat Q ( Qdiag ); |
---|
53 | chmat R ( Rdiag ); |
---|
54 | EKFCh KFE ( rx,ry,ru ); |
---|
55 | KFE.set_parameters ( &fxu,&hxu,Q,R ); |
---|
56 | KFE.set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); |
---|
57 | |
---|
58 | RV rQ ( "100","{Q}","4","0" ); |
---|
59 | EKF_unQ KFEp ( rx,ry,ru,rQ ); |
---|
60 | KFEp.set_parameters ( &fxu,&hxu,Q,R ); |
---|
61 | KFEp.set_est ( mu0, chmat ( 1000*ones ( 4 ) ) ); |
---|
62 | |
---|
63 | mgamma evolQ ( rQ,rQ ); |
---|
64 | MPF<EKF_unQ> M ( rx,rQ,evolQ,evolQ,Npart,KFEp ); |
---|
65 | // initialize |
---|
66 | evolQ.set_parameters ( 100.0 ); //sigma = 1/10 mu |
---|
67 | evolQ.condition ( "0.05 0.05 0.001 0.001" ); //Zdenek default |
---|
68 | epdf& pfinit=evolQ._epdf(); |
---|
69 | M.set_est ( pfinit ); |
---|
70 | evolQ.set_parameters ( 1000.0 ); |
---|
71 | |
---|
72 | // |
---|
73 | |
---|
74 | epdf& KFEep = KFE._epdf(); |
---|
75 | epdf& Mep = M._epdf(); |
---|
76 | |
---|
77 | mat Xt=zeros ( 9,Ndat ); //true state from simulator |
---|
78 | mat Dt=zeros ( 4,Ndat ); //observation |
---|
79 | mat XtE=zeros ( 4,Ndat ); |
---|
80 | mat XtM=zeros ( 8,Ndat ); //Q + x |
---|
81 | |
---|
82 | // SET SIMULATOR |
---|
83 | pmsmsim_set_parameters ( 0.28,0.003465,0.1989,0.0,4,1.5,0.04, 200., 3e-6, h ); |
---|
84 | double Ww=0.0; |
---|
85 | static int k_rampa=1; |
---|
86 | static long k_rampa_tmp=0; |
---|
87 | vec dt ( 2 ); |
---|
88 | vec dtVS =zeros( 2 ); |
---|
89 | vec xtVS =zeros(4); |
---|
90 | vec et ( 4 ); |
---|
91 | vec wt ( 2 ); |
---|
92 | vec ut ( 2 ); |
---|
93 | mat XtV=zeros ( 4,Ndat ); |
---|
94 | |
---|
95 | for ( int tK=1;tK<Ndat;tK++ ) { |
---|
96 | //Number of steps of a simulator for one step of Kalman |
---|
97 | for ( int ii=0; ii<Nsimstep;ii++ ) { |
---|
98 | //simulator |
---|
99 | Ww+=k_rampa*2.*M_PI*2e-4; //1000Hz/s |
---|
100 | if ( Ww>2.*M_PI*150. ) { |
---|
101 | Ww=2.*M_PI*150.; |
---|
102 | if ( k_rampa_tmp<500000 ) k_rampa_tmp++; |
---|
103 | else {k_rampa=-1;k_rampa_tmp=0;} |
---|
104 | }; |
---|
105 | if ( Ww<-2.*M_PI*150. ) Ww=-2.*M_PI*150.; /* */ |
---|
106 | |
---|
107 | pmsmsim_step ( Ww ); |
---|
108 | }; |
---|
109 | // collect data |
---|
110 | ut ( 0 ) = KalmanObs[0]; |
---|
111 | ut ( 1 ) = KalmanObs[1]; |
---|
112 | dt ( 0 ) = KalmanObs[2]; |
---|
113 | dt ( 1 ) = KalmanObs[3]; |
---|
114 | |
---|
115 | // My own simulator for testing : Asuming ut is OK |
---|
116 | NorRNG.sample_vector ( 4,et ); |
---|
117 | NorRNG.sample_vector ( 2,wt ); |
---|
118 | xtVS = fxu.eval ( xtVS,ut ) + Q.sqrt_mult ( et ); |
---|
119 | dtVS = hxu.eval ( xtVS,ut ) + R.sqrt_mult ( wt ); |
---|
120 | |
---|
121 | //estimator |
---|
122 | KFE.bayes ( concat ( dt,ut ) ); |
---|
123 | M.bayes ( concat ( dt,ut ) ); |
---|
124 | |
---|
125 | Xt.set_col ( tK,vec ( x,9 ) ); //vec from C-array |
---|
126 | Dt.set_col ( tK, concat ( dt,ut ) ); |
---|
127 | XtE.set_col ( tK,KFEep.mean() ); |
---|
128 | XtM.set_col ( tK,Mep.mean() ); |
---|
129 | XtV.set_col ( tK,xtVS ); |
---|
130 | } |
---|
131 | |
---|
132 | it_file fou ( "pmsm_sim.it" ); |
---|
133 | |
---|
134 | fou << Name ( "xth" ) << Xt; |
---|
135 | fou << Name ( "Dt" ) << Dt; |
---|
136 | fou << Name ( "xthE" ) << XtE; |
---|
137 | fou << Name ( "xthM" ) << XtM; |
---|
138 | fou << Name ( "xthV" ) << XtV; |
---|
139 | //Exit program: |
---|
140 | return 0; |
---|
141 | |
---|
142 | } |
---|