| 1 | /*! |
|---|
| 2 | * \file |
|---|
| 3 | * \brief Definitions of Cholesky factorisation functions |
|---|
| 4 | * \author Tony Ottosson |
|---|
| 5 | * |
|---|
| 6 | * ------------------------------------------------------------------------- |
|---|
| 7 | * |
|---|
| 8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
|---|
| 9 | * and communications classes and functions |
|---|
| 10 | * |
|---|
| 11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
|---|
| 12 | * |
|---|
| 13 | * This program is free software; you can redistribute it and/or modify |
|---|
| 14 | * it under the terms of the GNU General Public License as published by |
|---|
| 15 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 16 | * (at your option) any later version. |
|---|
| 17 | * |
|---|
| 18 | * This program is distributed in the hope that it will be useful, |
|---|
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 21 | * GNU General Public License for more details. |
|---|
| 22 | * |
|---|
| 23 | * You should have received a copy of the GNU General Public License |
|---|
| 24 | * along with this program; if not, write to the Free Software |
|---|
| 25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|---|
| 26 | * |
|---|
| 27 | * ------------------------------------------------------------------------- |
|---|
| 28 | */ |
|---|
| 29 | |
|---|
| 30 | #ifndef CHOLESKY_H |
|---|
| 31 | #define CHOLESKY_H |
|---|
| 32 | |
|---|
| 33 | #include <itpp/base/mat.h> |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | namespace itpp { |
|---|
| 37 | |
|---|
| 38 | /*! \addtogroup matrixdecomp |
|---|
| 39 | */ |
|---|
| 40 | //!@{ |
|---|
| 41 | |
|---|
| 42 | /*! |
|---|
| 43 | \brief Cholesky factorisation of real symmetric and positive definite matrix |
|---|
| 44 | |
|---|
| 45 | The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$ |
|---|
| 46 | of size \f$n \times n\f$ is given by |
|---|
| 47 | \f[ |
|---|
| 48 | \mathbf{X} = \mathbf{F}^T \mathbf{F} |
|---|
| 49 | \f] |
|---|
| 50 | where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix. |
|---|
| 51 | |
|---|
| 52 | Returns true if calcuation succeeded. False otherwise. |
|---|
| 53 | */ |
|---|
| 54 | bool chol(const mat &X, mat &F); |
|---|
| 55 | |
|---|
| 56 | /*! |
|---|
| 57 | \brief Cholesky factorisation of real symmetric and positive definite matrix |
|---|
| 58 | |
|---|
| 59 | The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$ |
|---|
| 60 | of size \f$n \times n\f$ is given by |
|---|
| 61 | \f[ |
|---|
| 62 | \mathbf{X} = \mathbf{F}^T \mathbf{F} |
|---|
| 63 | \f] |
|---|
| 64 | where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix. |
|---|
| 65 | */ |
|---|
| 66 | mat chol(const mat &X); |
|---|
| 67 | |
|---|
| 68 | |
|---|
| 69 | /*! |
|---|
| 70 | \brief Cholesky factorisation of complex hermitian and positive-definite matrix |
|---|
| 71 | |
|---|
| 72 | The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$ |
|---|
| 73 | of size \f$n \times n\f$ is given by |
|---|
| 74 | \f[ |
|---|
| 75 | \mathbf{X} = \mathbf{F}^H \mathbf{F} |
|---|
| 76 | \f] |
|---|
| 77 | where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix. |
|---|
| 78 | |
|---|
| 79 | Returns true if calcuation succeeded. False otherwise. |
|---|
| 80 | |
|---|
| 81 | If \c X is positive definite, true is returned and \c F=chol(X) |
|---|
| 82 | produces an upper triangular \c F. If also \c X is symmetric then \c F'*F = X. |
|---|
| 83 | If \c X is not positive definite, false is returned. |
|---|
| 84 | */ |
|---|
| 85 | bool chol(const cmat &X, cmat &F); |
|---|
| 86 | |
|---|
| 87 | /*! |
|---|
| 88 | \brief Cholesky factorisation of complex hermitian and positive-definite matrix |
|---|
| 89 | |
|---|
| 90 | The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$ |
|---|
| 91 | of size \f$n \times n\f$ is given by |
|---|
| 92 | \f[ |
|---|
| 93 | \mathbf{X} = \mathbf{F}^H \mathbf{F} |
|---|
| 94 | \f] |
|---|
| 95 | where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix. |
|---|
| 96 | */ |
|---|
| 97 | cmat chol(const cmat &X); |
|---|
| 98 | |
|---|
| 99 | //!@} |
|---|
| 100 | |
|---|
| 101 | } // namespace itpp |
|---|
| 102 | |
|---|
| 103 | #endif // #ifndef CHOLESKY_H |
|---|