root/win32/itpp-4.0.1/itpp/base/algebra/cholesky.h @ 98

Revision 35, 3.2 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of Cholesky factorisation functions
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef CHOLESKY_H
31#define CHOLESKY_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38  /*! \addtogroup matrixdecomp
39   */
40  //!@{
41
42  /*!
43    \brief Cholesky factorisation of real symmetric and positive definite matrix
44
45    The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$
46    of size \f$n \times n\f$ is given by
47    \f[
48    \mathbf{X} = \mathbf{F}^T \mathbf{F}
49    \f]
50    where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix.
51
52    Returns true if calcuation succeeded. False otherwise.
53  */
54  bool chol(const mat &X, mat &F);
55
56  /*!
57    \brief Cholesky factorisation of real symmetric and positive definite matrix
58
59    The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$
60    of size \f$n \times n\f$ is given by
61    \f[
62    \mathbf{X} = \mathbf{F}^T \mathbf{F}
63    \f]
64    where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix.
65  */
66  mat chol(const mat &X);
67
68
69  /*!
70    \brief Cholesky factorisation of complex hermitian and positive-definite matrix
71
72    The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$
73    of size \f$n \times n\f$ is given by
74    \f[
75    \mathbf{X} = \mathbf{F}^H \mathbf{F}
76    \f]
77    where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix.
78
79    Returns true if calcuation succeeded. False otherwise.
80
81    If \c X is positive definite, true is returned and \c F=chol(X)
82    produces an upper triangular \c F. If also \c X is symmetric then \c F'*F = X.
83    If \c X is not positive definite, false is returned.
84  */
85  bool chol(const cmat &X, cmat &F);
86
87  /*!
88    \brief Cholesky factorisation of complex hermitian and positive-definite matrix
89
90    The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$
91    of size \f$n \times n\f$ is given by
92    \f[
93    \mathbf{X} = \mathbf{F}^H \mathbf{F}
94    \f]
95    where \f$\mathbf{F}\f$ is an upper trangular \f$n \times n\f$ matrix.
96  */
97  cmat chol(const cmat &X);
98
99  //!@}
100
101} // namespace itpp
102
103#endif // #ifndef CHOLESKY_H
Note: See TracBrowser for help on using the browser.