root/win32/itpp-4.0.1/itpp/base/algebra/det.h @ 100

Revision 35, 2.2 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of determinant calculations
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef DET_H
31#define DET_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38  /*!
39    \brief Determinant of real square matrix.
40    \ingroup determinant
41
42    Calculate determinant of the real matrix \f$\mathbf{X}\f$
43
44    Uses LU-factorisation.
45    \f[
46    \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U}))
47    \f]
48    and the determinant of the permuation matrix is \f$ \pm 1\f$ dependening on the number of row permuations
49  */
50  double det(const mat &X);
51
52
53  /*!
54    \brief Determinant of complex square matrix.
55    \ingroup determinant
56
57    Calculate determinant of the complex matrix \f$\mathbf{X}\f$
58
59    Uses LU-factorisation.
60    \f[
61    \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U}))
62    \f]
63    and the determinant of the permuation matrix is \f$ \pm 1\f$ dependening on the number of row permuations
64  */
65  std::complex<double> det(const cmat &X);
66
67
68} // namespace itpp
69
70#endif // #ifndef DET_H
Note: See TracBrowser for help on using the browser.