root/win32/itpp-4.0.1/itpp/base/algebra/eigen.h @ 35

Revision 35, 7.6 kB (checked in by mido, 16 years ago)

zasadni zmeny ve /win32

RevLine 
[35]1/*!
2 * \file
3 * \brief Definitions of eigenvalue decomposition functions
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef EIGEN_H
31#define EIGEN_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38  /*!
39    \ingroup matrixdecomp
40    \brief Calculates the eigenvalues and eigenvectors of a symmetric real matrix
41
42    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
43    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
44    matrix \f$\mathbf{A}\f$ satisfies
45    \f[
46    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
47    \f]
48    The eigenvectors are the columns of the matrix V.
49    True is returned if the calculation was successful. Otherwise false.
50
51    Uses the LAPACK routine DSYEV.
52  */
53  bool eig_sym(const mat &A, vec &d, mat &V);
54
55  /*!
56    \ingroup matrixdecomp
57    \brief Calculates the eigenvalues of a symmetric real matrix
58
59    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
60    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
61    matrix \f$\mathbf{A}\f$ satisfies
62    \f[
63    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
64    \f]
65    True is returned if the calculation was successful. Otherwise false.
66
67    Uses the LAPACK routine DSYEV.
68  */
69  bool eig_sym(const mat &A, vec &d);
70
71  /*!
72    \ingroup matrixdecomp
73    \brief Calculates the eigenvalues of a symmetric real matrix
74
75    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
76    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$
77    matrix \f$\mathbf{A}\f$ satisfies
78    \f[
79    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
80    \f]
81
82    Uses the LAPACK routine DSYEV.
83  */
84  vec eig_sym(const mat &A);
85
86  /*!
87    \ingroup matrixdecomp
88    \brief Calculates the eigenvalues and eigenvectors of a hermitian complex matrix
89
90    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
91    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
92    matrix \f$\mathbf{A}\f$ satisfies
93    \f[
94    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
95    \f]
96    The eigenvectors are the columns of the matrix V.
97    True is returned if the calculation was successful. Otherwise false.
98
99    Uses the LAPACK routine ZHEEV.
100  */
101  bool eig_sym(const cmat &A, vec &d, cmat &V);
102
103  /*!
104    \ingroup matrixdecomp
105    \brief Calculates the eigenvalues of a hermitian complex matrix
106
107    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
108    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
109    matrix \f$\mathbf{A}\f$ satisfies
110    \f[
111    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
112    \f]
113    True is returned if the calculation was successful. Otherwise false.
114
115    Uses the LAPACK routine ZHEEV.
116  */
117  bool eig_sym(const cmat &A, vec &d);
118
119  /*!
120    \ingroup matrixdecomp
121    \brief Calculates the eigenvalues of a hermitian complex matrix
122
123    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
124    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$
125    matrix \f$\mathbf{A}\f$ satisfies
126    \f[
127    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
128    \f]
129
130    Uses the LAPACK routine ZHEEV.
131  */
132  vec eig_sym(const cmat &A);
133
134  /*!
135    \ingroup matrixdecomp
136    \brief Caclulates the eigenvalues and eigenvectors of a real non-symmetric matrix
137
138    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
139    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
140    matrix \f$\mathbf{A}\f$ satisfies
141    \f[
142    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
143    \f]
144    The eigenvectors are the columns of the matrix V.
145    True is returned if the calculation was successful. Otherwise false.
146
147    Uses the LAPACK routine DGEEV.
148  */
149  bool eig(const mat &A, cvec &d, cmat &V);
150
151  /*!
152    \ingroup matrixdecomp
153    \brief Caclulates the eigenvalues of a real non-symmetric matrix
154
155    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
156    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
157    matrix \f$\mathbf{A}\f$ satisfies
158    \f[
159    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
160    \f]
161    True is returned if the calculation was successful. Otherwise false.
162
163    Uses the LAPACK routine DGEEV.
164  */
165  bool eig(const mat &A, cvec &d);
166
167  /*!
168    \ingroup matrixdecomp
169    \brief Caclulates the eigenvalues of a real non-symmetric matrix
170
171    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
172    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$
173    matrix \f$\mathbf{A}\f$ satisfies
174    \f[
175    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
176    \f]
177
178    Uses the LAPACK routine DGEEV.
179  */
180  cvec eig(const mat &A);
181
182  /*!
183    \ingroup matrixdecomp
184    \brief Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix
185
186    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
187    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
188    matrix \f$\mathbf{A}\f$ satisfies
189    \f[
190    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
191    \f]
192    The eigenvectors are the columns of the matrix V.
193    True is returned if the calculation was successful. Otherwise false.
194
195    Uses the LAPACK routine ZGEEV.
196  */
197  bool eig(const cmat &A, cvec &d, cmat &V);
198
199  /*!
200    \ingroup matrixdecomp
201    \brief Calculates the eigenvalues of a complex non-hermitian matrix
202
203    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
204    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
205    matrix \f$\mathbf{A}\f$ satisfies
206    \f[
207    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
208    \f]
209    True is returned if the calculation was successful. Otherwise false.
210
211    Uses the LAPACK routine ZGEEV.
212  */
213  bool eig(const cmat &A, cvec &d);
214
215  /*!
216    \ingroup matrixdecomp
217    \brief Calculates the eigenvalues of a complex non-hermitian matrix
218
219    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors
220    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$
221    matrix \f$\mathbf{A}\f$ satisfies
222    \f[
223    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.
224    \f]
225
226    Uses the LAPACK routine ZGEEV.
227  */
228  cvec eig(const cmat &A);
229
230} // namespace itpp
231
232#endif // #ifndef EIGEN_H
Note: See TracBrowser for help on using the browser.