| 1 | /*! |
|---|
| 2 | * \file |
|---|
| 3 | * \brief Definitions of eigenvalue decomposition functions |
|---|
| 4 | * \author Tony Ottosson |
|---|
| 5 | * |
|---|
| 6 | * ------------------------------------------------------------------------- |
|---|
| 7 | * |
|---|
| 8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
|---|
| 9 | * and communications classes and functions |
|---|
| 10 | * |
|---|
| 11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
|---|
| 12 | * |
|---|
| 13 | * This program is free software; you can redistribute it and/or modify |
|---|
| 14 | * it under the terms of the GNU General Public License as published by |
|---|
| 15 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 16 | * (at your option) any later version. |
|---|
| 17 | * |
|---|
| 18 | * This program is distributed in the hope that it will be useful, |
|---|
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 21 | * GNU General Public License for more details. |
|---|
| 22 | * |
|---|
| 23 | * You should have received a copy of the GNU General Public License |
|---|
| 24 | * along with this program; if not, write to the Free Software |
|---|
| 25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|---|
| 26 | * |
|---|
| 27 | * ------------------------------------------------------------------------- |
|---|
| 28 | */ |
|---|
| 29 | |
|---|
| 30 | #ifndef EIGEN_H |
|---|
| 31 | #define EIGEN_H |
|---|
| 32 | |
|---|
| 33 | #include <itpp/base/mat.h> |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | namespace itpp { |
|---|
| 37 | |
|---|
| 38 | /*! |
|---|
| 39 | \ingroup matrixdecomp |
|---|
| 40 | \brief Calculates the eigenvalues and eigenvectors of a symmetric real matrix |
|---|
| 41 | |
|---|
| 42 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 43 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$ |
|---|
| 44 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 45 | \f[ |
|---|
| 46 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 47 | \f] |
|---|
| 48 | The eigenvectors are the columns of the matrix V. |
|---|
| 49 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 50 | |
|---|
| 51 | Uses the LAPACK routine DSYEV. |
|---|
| 52 | */ |
|---|
| 53 | bool eig_sym(const mat &A, vec &d, mat &V); |
|---|
| 54 | |
|---|
| 55 | /*! |
|---|
| 56 | \ingroup matrixdecomp |
|---|
| 57 | \brief Calculates the eigenvalues of a symmetric real matrix |
|---|
| 58 | |
|---|
| 59 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 60 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$ |
|---|
| 61 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 62 | \f[ |
|---|
| 63 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 64 | \f] |
|---|
| 65 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 66 | |
|---|
| 67 | Uses the LAPACK routine DSYEV. |
|---|
| 68 | */ |
|---|
| 69 | bool eig_sym(const mat &A, vec &d); |
|---|
| 70 | |
|---|
| 71 | /*! |
|---|
| 72 | \ingroup matrixdecomp |
|---|
| 73 | \brief Calculates the eigenvalues of a symmetric real matrix |
|---|
| 74 | |
|---|
| 75 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 76 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$ |
|---|
| 77 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 78 | \f[ |
|---|
| 79 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 80 | \f] |
|---|
| 81 | |
|---|
| 82 | Uses the LAPACK routine DSYEV. |
|---|
| 83 | */ |
|---|
| 84 | vec eig_sym(const mat &A); |
|---|
| 85 | |
|---|
| 86 | /*! |
|---|
| 87 | \ingroup matrixdecomp |
|---|
| 88 | \brief Calculates the eigenvalues and eigenvectors of a hermitian complex matrix |
|---|
| 89 | |
|---|
| 90 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 91 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$ |
|---|
| 92 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 93 | \f[ |
|---|
| 94 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 95 | \f] |
|---|
| 96 | The eigenvectors are the columns of the matrix V. |
|---|
| 97 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 98 | |
|---|
| 99 | Uses the LAPACK routine ZHEEV. |
|---|
| 100 | */ |
|---|
| 101 | bool eig_sym(const cmat &A, vec &d, cmat &V); |
|---|
| 102 | |
|---|
| 103 | /*! |
|---|
| 104 | \ingroup matrixdecomp |
|---|
| 105 | \brief Calculates the eigenvalues of a hermitian complex matrix |
|---|
| 106 | |
|---|
| 107 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 108 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$ |
|---|
| 109 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 110 | \f[ |
|---|
| 111 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 112 | \f] |
|---|
| 113 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 114 | |
|---|
| 115 | Uses the LAPACK routine ZHEEV. |
|---|
| 116 | */ |
|---|
| 117 | bool eig_sym(const cmat &A, vec &d); |
|---|
| 118 | |
|---|
| 119 | /*! |
|---|
| 120 | \ingroup matrixdecomp |
|---|
| 121 | \brief Calculates the eigenvalues of a hermitian complex matrix |
|---|
| 122 | |
|---|
| 123 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 124 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$ |
|---|
| 125 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 126 | \f[ |
|---|
| 127 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 128 | \f] |
|---|
| 129 | |
|---|
| 130 | Uses the LAPACK routine ZHEEV. |
|---|
| 131 | */ |
|---|
| 132 | vec eig_sym(const cmat &A); |
|---|
| 133 | |
|---|
| 134 | /*! |
|---|
| 135 | \ingroup matrixdecomp |
|---|
| 136 | \brief Caclulates the eigenvalues and eigenvectors of a real non-symmetric matrix |
|---|
| 137 | |
|---|
| 138 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 139 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$ |
|---|
| 140 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 141 | \f[ |
|---|
| 142 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 143 | \f] |
|---|
| 144 | The eigenvectors are the columns of the matrix V. |
|---|
| 145 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 146 | |
|---|
| 147 | Uses the LAPACK routine DGEEV. |
|---|
| 148 | */ |
|---|
| 149 | bool eig(const mat &A, cvec &d, cmat &V); |
|---|
| 150 | |
|---|
| 151 | /*! |
|---|
| 152 | \ingroup matrixdecomp |
|---|
| 153 | \brief Caclulates the eigenvalues of a real non-symmetric matrix |
|---|
| 154 | |
|---|
| 155 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 156 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$ |
|---|
| 157 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 158 | \f[ |
|---|
| 159 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 160 | \f] |
|---|
| 161 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 162 | |
|---|
| 163 | Uses the LAPACK routine DGEEV. |
|---|
| 164 | */ |
|---|
| 165 | bool eig(const mat &A, cvec &d); |
|---|
| 166 | |
|---|
| 167 | /*! |
|---|
| 168 | \ingroup matrixdecomp |
|---|
| 169 | \brief Caclulates the eigenvalues of a real non-symmetric matrix |
|---|
| 170 | |
|---|
| 171 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 172 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$ |
|---|
| 173 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 174 | \f[ |
|---|
| 175 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 176 | \f] |
|---|
| 177 | |
|---|
| 178 | Uses the LAPACK routine DGEEV. |
|---|
| 179 | */ |
|---|
| 180 | cvec eig(const mat &A); |
|---|
| 181 | |
|---|
| 182 | /*! |
|---|
| 183 | \ingroup matrixdecomp |
|---|
| 184 | \brief Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix |
|---|
| 185 | |
|---|
| 186 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 187 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$ |
|---|
| 188 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 189 | \f[ |
|---|
| 190 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 191 | \f] |
|---|
| 192 | The eigenvectors are the columns of the matrix V. |
|---|
| 193 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 194 | |
|---|
| 195 | Uses the LAPACK routine ZGEEV. |
|---|
| 196 | */ |
|---|
| 197 | bool eig(const cmat &A, cvec &d, cmat &V); |
|---|
| 198 | |
|---|
| 199 | /*! |
|---|
| 200 | \ingroup matrixdecomp |
|---|
| 201 | \brief Calculates the eigenvalues of a complex non-hermitian matrix |
|---|
| 202 | |
|---|
| 203 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 204 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$ |
|---|
| 205 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 206 | \f[ |
|---|
| 207 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 208 | \f] |
|---|
| 209 | True is returned if the calculation was successful. Otherwise false. |
|---|
| 210 | |
|---|
| 211 | Uses the LAPACK routine ZGEEV. |
|---|
| 212 | */ |
|---|
| 213 | bool eig(const cmat &A, cvec &d); |
|---|
| 214 | |
|---|
| 215 | /*! |
|---|
| 216 | \ingroup matrixdecomp |
|---|
| 217 | \brief Calculates the eigenvalues of a complex non-hermitian matrix |
|---|
| 218 | |
|---|
| 219 | The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors |
|---|
| 220 | \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$ |
|---|
| 221 | matrix \f$\mathbf{A}\f$ satisfies |
|---|
| 222 | \f[ |
|---|
| 223 | \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. |
|---|
| 224 | \f] |
|---|
| 225 | |
|---|
| 226 | Uses the LAPACK routine ZGEEV. |
|---|
| 227 | */ |
|---|
| 228 | cvec eig(const cmat &A); |
|---|
| 229 | |
|---|
| 230 | } // namespace itpp |
|---|
| 231 | |
|---|
| 232 | #endif // #ifndef EIGEN_H |
|---|