root/win32/itpp-4.0.1/itpp/base/algebra/ls_solve.h @ 100

Revision 35, 15.0 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of functions for solving linear equation systems
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef LS_SOLVE_H
31#define LS_SOLVE_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38
39  /*! \addtogroup linearequations
40   */
41  //!@{
42
43  /*! \brief Solve linear equation system by LU factorisation.
44
45  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.
46  Uses the LAPACK routine DGESV.
47  */
48  bool ls_solve(const mat &A, const vec &b, vec &x);
49
50  /*! \brief Solve linear equation system by LU factorisation.
51
52  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.
53  Uses the LAPACK routine DGESV.
54  */
55  vec ls_solve(const mat &A, const vec &b);
56
57  /*! \brief Solve multiple linear equations by LU factorisation.
58
59  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.
60  Uses the LAPACK routine DGESV.
61  */
62  bool ls_solve(const mat &A, const mat &B, mat &X);
63
64  /*! \brief Solve multiple linear equations by LU factorisation.
65
66  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.
67  Uses the LAPACK routine DGESV.
68  */
69  mat ls_solve(const mat &A, const mat &B);
70
71
72  /*! \brief Solve linear equation system by LU factorisation.
73
74  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.
75  Uses the LAPACK routine ZGESV.
76  */
77  bool ls_solve(const cmat &A, const cvec &b, cvec &x);
78
79  /*! \brief Solve linear equation system by LU factorisation.
80
81  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.
82  Uses the LAPACK routine ZGESV.
83  */
84  cvec ls_solve(const cmat &A, const cvec &b);
85
86  /*! \brief Solve multiple linear equations by LU factorisation.
87
88  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.
89  Uses the LAPACK routine ZGESV.
90  */
91  bool ls_solve(const cmat &A, const cmat &B, cmat &X);
92
93  /*! \brief Solve multiple linear equations by LU factorisation.
94
95  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.
96  Uses the LAPACK routine ZGESV.
97  */
98  cmat ls_solve(const cmat &A, const cmat &B);
99
100
101  /*! \brief Solve linear equation system by Cholesky factorisation.
102
103  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix.
104  Uses the LAPACK routine DPOSV.
105  */
106  bool ls_solve_chol(const mat &A, const vec &b, vec &x);
107
108  /*! \brief Solve linear equation system by Cholesky factorisation.
109
110  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix.
111  Uses the LAPACK routine DPOSV.
112  */
113  vec ls_solve_chol(const mat &A, const vec &b);
114
115  /*! \brief Solve linear equation system by Cholesky factorisation.
116
117  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix.
118  Uses the LAPACK routine DPOSV.
119  */
120  bool ls_solve_chol(const mat &A, const mat &B, mat &X);
121
122  /*! \brief Solve linear equation system by Cholesky factorisation.
123
124  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix.
125  Uses the LAPACK routine DPOSV.
126  */
127  mat ls_solve_chol(const mat &A, const mat &B);
128
129
130  /*! \brief Solve linear equation system by Cholesky factorisation.
131
132  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix.
133  Uses the LAPACK routine ZPOSV.
134  */
135  bool ls_solve_chol(const cmat &A, const cvec &b, cvec &x);
136
137  /*! \brief Solve linear equation system by Cholesky factorisation.
138
139  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix.
140  Uses the LAPACK routine ZPOSV.
141  */
142  cvec ls_solve_chol(const cmat &A, const cvec &b);
143
144  /*! \brief Solve linear equation system by Cholesky factorisation.
145
146  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix.
147  Uses the LAPACK routine ZPOSV.
148  */
149  bool ls_solve_chol(const cmat &A, const cmat &B, cmat &X);
150
151  /*! \brief Solve linear equation system by Cholesky factorisation.
152
153  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix.
154  Uses the LAPACK routine ZPOSV.
155  */
156  cmat ls_solve_chol(const cmat &A, const cmat &B);
157
158
159
160  /*! \brief Solves overdetermined linear equation systems.
161
162  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
163  Uses QR-factorization and is built upon the LAPACK routine DGELS.
164  */
165  bool ls_solve_od(const mat &A, const vec &b, vec &x);
166
167  /*! \brief Solves overdetermined linear equation systems.
168
169  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
170  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
171  */
172  vec ls_solve_od(const mat &A, const vec &b);
173
174  /*! \brief Solves overdetermined linear equation systems.
175
176  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
177  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
178  */
179  bool ls_solve_od(const mat &A, const mat &B, mat &X);
180
181  /*! \brief Solves overdetermined linear equation systems.
182
183  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
184  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
185  */
186  mat ls_solve_od(const mat &A, const mat &B);
187
188
189  /*! \brief Solves overdetermined linear equation systems.
190
191  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
192  Uses QR-factorization and is built upon the LAPACK routine ZGELS.
193  */
194  bool ls_solve_od(const cmat &A, const cvec &b, cvec &x);
195
196  /*! \brief Solves overdetermined linear equation systems.
197
198  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
199  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
200  */
201  cvec ls_solve_od(const cmat &A, const cvec &b);
202
203  /*! \brief Solves overdetermined linear equation systems.
204
205  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
206  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
207  */
208  bool ls_solve_od(const cmat &A, const cmat &B, cmat &X);
209
210  /*! \brief Solves overdetermined linear equation systems.
211
212  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.
213  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
214  */
215  cmat ls_solve_od(const cmat &A, const cmat &B);
216
217
218
219  /*! \brief Solves underdetermined linear equation systems.
220
221  Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
222  Uses LQ-factorization and is built upon the LAPACK routine DGELS.
223  */
224  bool ls_solve_ud(const mat &A, const vec &b, vec &x);
225
226  /*! \brief Solves overdetermined linear equation systems.
227
228  Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
229  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
230  */
231  vec ls_solve_ud(const mat &A, const vec &b);
232
233  /*! \brief Solves underdetermined linear equation systems.
234
235  Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
236  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
237  */
238  bool ls_solve_ud(const mat &A, const mat &B, mat &X);
239
240  /*! \brief Solves underdetermined linear equation systems.
241
242  Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
243  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.
244  */
245  mat ls_solve_ud(const mat &A, const mat &B);
246
247
248  /*! \brief Solves underdetermined linear equation systems.
249
250  Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
251  Uses LQ-factorization and is built upon the LAPACK routine ZGELS.
252  */
253  bool ls_solve_ud(const cmat &A, const cvec &b, cvec &x);
254
255  /*! \brief Solves overdetermined linear equation systems.
256
257  Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
258  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
259  */
260  cvec ls_solve_ud(const cmat &A, const cvec &b);
261
262  /*! \brief Solves underdetermined linear equation systems.
263
264  Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
265  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
266  */
267  bool ls_solve_ud(const cmat &A, const cmat &B, cmat &X);
268
269  /*! \brief Solves underdetermined linear equation systems.
270
271  Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$.
272  Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
273  */
274  cmat ls_solve_ud(const cmat &A, const cmat &B);
275
276
277  /*! \brief A general linear equation system solver.
278
279  Tries to emulate the backslash operator in Matlab by calling
280  ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x)
281  */
282  bool backslash(const mat &A, const vec &b, vec &x);
283
284  /*! \brief A general linear equation system solver.
285
286  Tries to emulate the backslash operator in Matlab by calling
287  ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b)
288  */
289  vec backslash(const mat &A, const vec &b);
290
291  /*! \brief A general linear equation system solver.
292
293  Tries to emulate the backslash operator in Matlab by calling
294  ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X).
295  */
296  bool backslash(const mat &A, const mat &B, mat &X);
297
298  /*! \brief A general linear equation system solver.
299
300  Tries to emulate the backslash operator in Matlab by calling
301  ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B).
302  */
303  mat backslash(const mat &A, const mat &B);
304
305
306  /*! \brief A general linear equation system solver.
307
308  Tries to emulate the backslash operator in Matlab by calling
309  ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x)
310  */
311  bool backslash(const cmat &A, const cvec &b, cvec &x);
312
313  /*! \brief A general linear equation system solver.
314
315  Tries to emulate the backslash operator in Matlab by calling
316  ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b)
317  */
318  cvec backslash(const cmat &A, const cvec &b);
319
320  /*! \brief A general linear equation system solver.
321
322  Tries to emulate the backslash operator in Matlab by calling
323  ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X).
324  */
325  bool backslash(const cmat &A, const cmat &B, cmat &X);
326
327  /*! \brief A general linear equation system solver.
328
329  Tries to emulate the backslash operator in Matlab by calling
330  ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B).
331  */
332  cmat backslash(const cmat &A, const cmat &B);
333
334
335
336  /*! \brief Forward substitution of square matrix.
337
338  Solves Lx=b, where L is a lower triangular n by n matrix.
339  Assumes that L is nonsingular. Requires n^2 flops.
340  Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89.
341  */
342  vec forward_substitution(const mat &L, const vec &b);
343
344  /*! \brief Forward substitution of square matrix.
345
346  Solves Lx=b, where L is a lower triangular n by n matrix.
347  Assumes that L is nonsingular. Requires n^2 flops.
348  Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89.
349  */
350  void forward_substitution(const mat &L, const vec &b, vec &x);
351
352  /*! \brief Forward substitution of band matricies.
353
354  Solves Lx=b, where L is a lower triangular n by n band-matrix with lower
355  bandwidth p.
356  Assumes that L is nonsingular. Requires about 2np flops (if n >> p).
357  Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153.
358  */
359  vec forward_substitution(const mat &L, int p, const vec &b);
360
361  /*! \brief Forward substitution of band matricies.
362
363  Solves Lx=b, where L is a lower triangular n by n band-matrix with
364  lower bandwidth p.
365  Assumes that L is nonsingular. Requires about 2np flops (if n >> p).
366  Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153.
367  */
368  void forward_substitution(const mat &L, int p, const vec &b, vec &x);
369
370  /*! \brief Backward substitution of square matrix.
371
372  Solves Ux=b, where U is a upper triangular n by n matrix.
373  Assumes that U is nonsingular. Requires n^2 flops.
374  Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89.
375  */
376  vec backward_substitution(const mat &U, const vec &b);
377
378  /*! \brief Backward substitution of square matrix.
379
380  Solves Ux=b, where U is a upper triangular n by n matrix.
381  Assumes that U is nonsingular. Requires n^2 flops.
382  Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89.
383  */
384  void backward_substitution(const mat &U, const vec &b, vec &x);
385
386  /*! \brief Backward substitution of band matrix.
387
388  Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with
389  upper bandwidth q.
390  Assumes that U is nonsingular. Requires about 2nq flops (if n >> q).
391  Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153.
392  */
393  vec backward_substitution(const mat &U, int q, const vec &b);
394
395  /*! \brief Backward substitution of band matrix.
396
397  Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with
398  upper bandwidth q.
399  Assumes that U is nonsingular. Requires about 2nq flops (if n >> q).
400  Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153.
401  */
402  void backward_substitution(const mat &U, int q, const vec &b, vec &x);
403
404  //!@}
405
406} //namespace itpp
407
408#endif // #ifndef LS_SOLVE_H
409
410
Note: See TracBrowser for help on using the browser.