| 1 | /*! | 
|---|
| 2 | * \file | 
|---|
| 3 | * \brief Definitions of functions for solving linear equation systems | 
|---|
| 4 | * \author Tony Ottosson | 
|---|
| 5 | * | 
|---|
| 6 | * ------------------------------------------------------------------------- | 
|---|
| 7 | * | 
|---|
| 8 | * IT++ - C++ library of mathematical, signal processing, speech processing, | 
|---|
| 9 | *        and communications classes and functions | 
|---|
| 10 | * | 
|---|
| 11 | * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors) | 
|---|
| 12 | * | 
|---|
| 13 | * This program is free software; you can redistribute it and/or modify | 
|---|
| 14 | * it under the terms of the GNU General Public License as published by | 
|---|
| 15 | * the Free Software Foundation; either version 2 of the License, or | 
|---|
| 16 | * (at your option) any later version. | 
|---|
| 17 | * | 
|---|
| 18 | * This program is distributed in the hope that it will be useful, | 
|---|
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 21 | * GNU General Public License for more details. | 
|---|
| 22 | * | 
|---|
| 23 | * You should have received a copy of the GNU General Public License | 
|---|
| 24 | * along with this program; if not, write to the Free Software | 
|---|
| 25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|---|
| 26 | * | 
|---|
| 27 | * ------------------------------------------------------------------------- | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | #ifndef LS_SOLVE_H | 
|---|
| 31 | #define LS_SOLVE_H | 
|---|
| 32 |  | 
|---|
| 33 | #include <itpp/base/mat.h> | 
|---|
| 34 |  | 
|---|
| 35 |  | 
|---|
| 36 | namespace itpp { | 
|---|
| 37 |  | 
|---|
| 38 |  | 
|---|
| 39 | /*! \addtogroup linearequations | 
|---|
| 40 | */ | 
|---|
| 41 | //!@{ | 
|---|
| 42 |  | 
|---|
| 43 | /*! \brief Solve linear equation system by LU factorisation. | 
|---|
| 44 |  | 
|---|
| 45 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. | 
|---|
| 46 | Uses the LAPACK routine DGESV. | 
|---|
| 47 | */ | 
|---|
| 48 | bool ls_solve(const mat &A, const vec &b, vec &x); | 
|---|
| 49 |  | 
|---|
| 50 | /*! \brief Solve linear equation system by LU factorisation. | 
|---|
| 51 |  | 
|---|
| 52 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. | 
|---|
| 53 | Uses the LAPACK routine DGESV. | 
|---|
| 54 | */ | 
|---|
| 55 | vec ls_solve(const mat &A, const vec &b); | 
|---|
| 56 |  | 
|---|
| 57 | /*! \brief Solve multiple linear equations by LU factorisation. | 
|---|
| 58 |  | 
|---|
| 59 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. | 
|---|
| 60 | Uses the LAPACK routine DGESV. | 
|---|
| 61 | */ | 
|---|
| 62 | bool ls_solve(const mat &A, const mat &B, mat &X); | 
|---|
| 63 |  | 
|---|
| 64 | /*! \brief Solve multiple linear equations by LU factorisation. | 
|---|
| 65 |  | 
|---|
| 66 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. | 
|---|
| 67 | Uses the LAPACK routine DGESV. | 
|---|
| 68 | */ | 
|---|
| 69 | mat ls_solve(const mat &A, const mat &B); | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 | /*! \brief Solve linear equation system by LU factorisation. | 
|---|
| 73 |  | 
|---|
| 74 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. | 
|---|
| 75 | Uses the LAPACK routine ZGESV. | 
|---|
| 76 | */ | 
|---|
| 77 | bool ls_solve(const cmat &A, const cvec &b, cvec &x); | 
|---|
| 78 |  | 
|---|
| 79 | /*! \brief Solve linear equation system by LU factorisation. | 
|---|
| 80 |  | 
|---|
| 81 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. | 
|---|
| 82 | Uses the LAPACK routine ZGESV. | 
|---|
| 83 | */ | 
|---|
| 84 | cvec ls_solve(const cmat &A, const cvec &b); | 
|---|
| 85 |  | 
|---|
| 86 | /*! \brief Solve multiple linear equations by LU factorisation. | 
|---|
| 87 |  | 
|---|
| 88 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. | 
|---|
| 89 | Uses the LAPACK routine ZGESV. | 
|---|
| 90 | */ | 
|---|
| 91 | bool ls_solve(const cmat &A, const cmat &B, cmat &X); | 
|---|
| 92 |  | 
|---|
| 93 | /*! \brief Solve multiple linear equations by LU factorisation. | 
|---|
| 94 |  | 
|---|
| 95 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. | 
|---|
| 96 | Uses the LAPACK routine ZGESV. | 
|---|
| 97 | */ | 
|---|
| 98 | cmat ls_solve(const cmat &A, const cmat &B); | 
|---|
| 99 |  | 
|---|
| 100 |  | 
|---|
| 101 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 102 |  | 
|---|
| 103 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. | 
|---|
| 104 | Uses the LAPACK routine DPOSV. | 
|---|
| 105 | */ | 
|---|
| 106 | bool ls_solve_chol(const mat &A, const vec &b, vec &x); | 
|---|
| 107 |  | 
|---|
| 108 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 109 |  | 
|---|
| 110 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. | 
|---|
| 111 | Uses the LAPACK routine DPOSV. | 
|---|
| 112 | */ | 
|---|
| 113 | vec ls_solve_chol(const mat &A, const vec &b); | 
|---|
| 114 |  | 
|---|
| 115 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 116 |  | 
|---|
| 117 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. | 
|---|
| 118 | Uses the LAPACK routine DPOSV. | 
|---|
| 119 | */ | 
|---|
| 120 | bool ls_solve_chol(const mat &A, const mat &B, mat &X); | 
|---|
| 121 |  | 
|---|
| 122 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 123 |  | 
|---|
| 124 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. | 
|---|
| 125 | Uses the LAPACK routine DPOSV. | 
|---|
| 126 | */ | 
|---|
| 127 | mat ls_solve_chol(const mat &A, const mat &B); | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 131 |  | 
|---|
| 132 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. | 
|---|
| 133 | Uses the LAPACK routine ZPOSV. | 
|---|
| 134 | */ | 
|---|
| 135 | bool ls_solve_chol(const cmat &A, const cvec &b, cvec &x); | 
|---|
| 136 |  | 
|---|
| 137 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 138 |  | 
|---|
| 139 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. | 
|---|
| 140 | Uses the LAPACK routine ZPOSV. | 
|---|
| 141 | */ | 
|---|
| 142 | cvec ls_solve_chol(const cmat &A, const cvec &b); | 
|---|
| 143 |  | 
|---|
| 144 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 145 |  | 
|---|
| 146 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. | 
|---|
| 147 | Uses the LAPACK routine ZPOSV. | 
|---|
| 148 | */ | 
|---|
| 149 | bool ls_solve_chol(const cmat &A, const cmat &B, cmat &X); | 
|---|
| 150 |  | 
|---|
| 151 | /*! \brief Solve linear equation system by Cholesky factorisation. | 
|---|
| 152 |  | 
|---|
| 153 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. | 
|---|
| 154 | Uses the LAPACK routine ZPOSV. | 
|---|
| 155 | */ | 
|---|
| 156 | cmat ls_solve_chol(const cmat &A, const cmat &B); | 
|---|
| 157 |  | 
|---|
| 158 |  | 
|---|
| 159 |  | 
|---|
| 160 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 161 |  | 
|---|
| 162 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 163 | Uses QR-factorization and is built upon the LAPACK routine DGELS. | 
|---|
| 164 | */ | 
|---|
| 165 | bool ls_solve_od(const mat &A, const vec &b, vec &x); | 
|---|
| 166 |  | 
|---|
| 167 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 168 |  | 
|---|
| 169 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 170 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 171 | */ | 
|---|
| 172 | vec ls_solve_od(const mat &A, const vec &b); | 
|---|
| 173 |  | 
|---|
| 174 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 175 |  | 
|---|
| 176 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 177 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 178 | */ | 
|---|
| 179 | bool ls_solve_od(const mat &A, const mat &B, mat &X); | 
|---|
| 180 |  | 
|---|
| 181 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 182 |  | 
|---|
| 183 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 184 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 185 | */ | 
|---|
| 186 | mat ls_solve_od(const mat &A, const mat &B); | 
|---|
| 187 |  | 
|---|
| 188 |  | 
|---|
| 189 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 190 |  | 
|---|
| 191 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 192 | Uses QR-factorization and is built upon the LAPACK routine ZGELS. | 
|---|
| 193 | */ | 
|---|
| 194 | bool ls_solve_od(const cmat &A, const cvec &b, cvec &x); | 
|---|
| 195 |  | 
|---|
| 196 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 197 |  | 
|---|
| 198 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 199 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 200 | */ | 
|---|
| 201 | cvec ls_solve_od(const cmat &A, const cvec &b); | 
|---|
| 202 |  | 
|---|
| 203 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 204 |  | 
|---|
| 205 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 206 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 207 | */ | 
|---|
| 208 | bool ls_solve_od(const cmat &A, const cmat &B, cmat &X); | 
|---|
| 209 |  | 
|---|
| 210 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 211 |  | 
|---|
| 212 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. | 
|---|
| 213 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 214 | */ | 
|---|
| 215 | cmat ls_solve_od(const cmat &A, const cmat &B); | 
|---|
| 216 |  | 
|---|
| 217 |  | 
|---|
| 218 |  | 
|---|
| 219 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 220 |  | 
|---|
| 221 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 222 | Uses LQ-factorization and is built upon the LAPACK routine DGELS. | 
|---|
| 223 | */ | 
|---|
| 224 | bool ls_solve_ud(const mat &A, const vec &b, vec &x); | 
|---|
| 225 |  | 
|---|
| 226 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 227 |  | 
|---|
| 228 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 229 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 230 | */ | 
|---|
| 231 | vec ls_solve_ud(const mat &A, const vec &b); | 
|---|
| 232 |  | 
|---|
| 233 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 234 |  | 
|---|
| 235 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 236 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 237 | */ | 
|---|
| 238 | bool ls_solve_ud(const mat &A, const mat &B, mat &X); | 
|---|
| 239 |  | 
|---|
| 240 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 241 |  | 
|---|
| 242 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 243 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. | 
|---|
| 244 | */ | 
|---|
| 245 | mat ls_solve_ud(const mat &A, const mat &B); | 
|---|
| 246 |  | 
|---|
| 247 |  | 
|---|
| 248 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 249 |  | 
|---|
| 250 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 251 | Uses LQ-factorization and is built upon the LAPACK routine ZGELS. | 
|---|
| 252 | */ | 
|---|
| 253 | bool ls_solve_ud(const cmat &A, const cvec &b, cvec &x); | 
|---|
| 254 |  | 
|---|
| 255 | /*! \brief Solves overdetermined linear equation systems. | 
|---|
| 256 |  | 
|---|
| 257 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 258 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 259 | */ | 
|---|
| 260 | cvec ls_solve_ud(const cmat &A, const cvec &b); | 
|---|
| 261 |  | 
|---|
| 262 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 263 |  | 
|---|
| 264 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 265 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 266 | */ | 
|---|
| 267 | bool ls_solve_ud(const cmat &A, const cmat &B, cmat &X); | 
|---|
| 268 |  | 
|---|
| 269 | /*! \brief Solves underdetermined linear equation systems. | 
|---|
| 270 |  | 
|---|
| 271 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. | 
|---|
| 272 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. | 
|---|
| 273 | */ | 
|---|
| 274 | cmat ls_solve_ud(const cmat &A, const cmat &B); | 
|---|
| 275 |  | 
|---|
| 276 |  | 
|---|
| 277 | /*! \brief A general linear equation system solver. | 
|---|
| 278 |  | 
|---|
| 279 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 280 | ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x) | 
|---|
| 281 | */ | 
|---|
| 282 | bool backslash(const mat &A, const vec &b, vec &x); | 
|---|
| 283 |  | 
|---|
| 284 | /*! \brief A general linear equation system solver. | 
|---|
| 285 |  | 
|---|
| 286 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 287 | ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b) | 
|---|
| 288 | */ | 
|---|
| 289 | vec backslash(const mat &A, const vec &b); | 
|---|
| 290 |  | 
|---|
| 291 | /*! \brief A general linear equation system solver. | 
|---|
| 292 |  | 
|---|
| 293 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 294 | ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X). | 
|---|
| 295 | */ | 
|---|
| 296 | bool backslash(const mat &A, const mat &B, mat &X); | 
|---|
| 297 |  | 
|---|
| 298 | /*! \brief A general linear equation system solver. | 
|---|
| 299 |  | 
|---|
| 300 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 301 | ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B). | 
|---|
| 302 | */ | 
|---|
| 303 | mat backslash(const mat &A, const mat &B); | 
|---|
| 304 |  | 
|---|
| 305 |  | 
|---|
| 306 | /*! \brief A general linear equation system solver. | 
|---|
| 307 |  | 
|---|
| 308 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 309 | ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x) | 
|---|
| 310 | */ | 
|---|
| 311 | bool backslash(const cmat &A, const cvec &b, cvec &x); | 
|---|
| 312 |  | 
|---|
| 313 | /*! \brief A general linear equation system solver. | 
|---|
| 314 |  | 
|---|
| 315 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 316 | ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b) | 
|---|
| 317 | */ | 
|---|
| 318 | cvec backslash(const cmat &A, const cvec &b); | 
|---|
| 319 |  | 
|---|
| 320 | /*! \brief A general linear equation system solver. | 
|---|
| 321 |  | 
|---|
| 322 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 323 | ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X). | 
|---|
| 324 | */ | 
|---|
| 325 | bool backslash(const cmat &A, const cmat &B, cmat &X); | 
|---|
| 326 |  | 
|---|
| 327 | /*! \brief A general linear equation system solver. | 
|---|
| 328 |  | 
|---|
| 329 | Tries to emulate the backslash operator in Matlab by calling | 
|---|
| 330 | ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B). | 
|---|
| 331 | */ | 
|---|
| 332 | cmat backslash(const cmat &A, const cmat &B); | 
|---|
| 333 |  | 
|---|
| 334 |  | 
|---|
| 335 |  | 
|---|
| 336 | /*! \brief Forward substitution of square matrix. | 
|---|
| 337 |  | 
|---|
| 338 | Solves Lx=b, where L is a lower triangular n by n matrix. | 
|---|
| 339 | Assumes that L is nonsingular. Requires n^2 flops. | 
|---|
| 340 | Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. | 
|---|
| 341 | */ | 
|---|
| 342 | vec forward_substitution(const mat &L, const vec &b); | 
|---|
| 343 |  | 
|---|
| 344 | /*! \brief Forward substitution of square matrix. | 
|---|
| 345 |  | 
|---|
| 346 | Solves Lx=b, where L is a lower triangular n by n matrix. | 
|---|
| 347 | Assumes that L is nonsingular. Requires n^2 flops. | 
|---|
| 348 | Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. | 
|---|
| 349 | */ | 
|---|
| 350 | void forward_substitution(const mat &L, const vec &b, vec &x); | 
|---|
| 351 |  | 
|---|
| 352 | /*! \brief Forward substitution of band matricies. | 
|---|
| 353 |  | 
|---|
| 354 | Solves Lx=b, where L is a lower triangular n by n band-matrix with lower | 
|---|
| 355 | bandwidth p. | 
|---|
| 356 | Assumes that L is nonsingular. Requires about 2np flops (if n >> p). | 
|---|
| 357 | Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. | 
|---|
| 358 | */ | 
|---|
| 359 | vec forward_substitution(const mat &L, int p, const vec &b); | 
|---|
| 360 |  | 
|---|
| 361 | /*! \brief Forward substitution of band matricies. | 
|---|
| 362 |  | 
|---|
| 363 | Solves Lx=b, where L is a lower triangular n by n band-matrix with | 
|---|
| 364 | lower bandwidth p. | 
|---|
| 365 | Assumes that L is nonsingular. Requires about 2np flops (if n >> p). | 
|---|
| 366 | Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. | 
|---|
| 367 | */ | 
|---|
| 368 | void forward_substitution(const mat &L, int p, const vec &b, vec &x); | 
|---|
| 369 |  | 
|---|
| 370 | /*! \brief Backward substitution of square matrix. | 
|---|
| 371 |  | 
|---|
| 372 | Solves Ux=b, where U is a upper triangular n by n matrix. | 
|---|
| 373 | Assumes that U is nonsingular. Requires n^2 flops. | 
|---|
| 374 | Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. | 
|---|
| 375 | */ | 
|---|
| 376 | vec backward_substitution(const mat &U, const vec &b); | 
|---|
| 377 |  | 
|---|
| 378 | /*! \brief Backward substitution of square matrix. | 
|---|
| 379 |  | 
|---|
| 380 | Solves Ux=b, where U is a upper triangular n by n matrix. | 
|---|
| 381 | Assumes that U is nonsingular. Requires n^2 flops. | 
|---|
| 382 | Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. | 
|---|
| 383 | */ | 
|---|
| 384 | void backward_substitution(const mat &U, const vec &b, vec &x); | 
|---|
| 385 |  | 
|---|
| 386 | /*! \brief Backward substitution of band matrix. | 
|---|
| 387 |  | 
|---|
| 388 | Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with | 
|---|
| 389 | upper bandwidth q. | 
|---|
| 390 | Assumes that U is nonsingular. Requires about 2nq flops (if n >> q). | 
|---|
| 391 | Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. | 
|---|
| 392 | */ | 
|---|
| 393 | vec backward_substitution(const mat &U, int q, const vec &b); | 
|---|
| 394 |  | 
|---|
| 395 | /*! \brief Backward substitution of band matrix. | 
|---|
| 396 |  | 
|---|
| 397 | Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with | 
|---|
| 398 | upper bandwidth q. | 
|---|
| 399 | Assumes that U is nonsingular. Requires about 2nq flops (if n >> q). | 
|---|
| 400 | Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. | 
|---|
| 401 | */ | 
|---|
| 402 | void backward_substitution(const mat &U, int q, const vec &b, vec &x); | 
|---|
| 403 |  | 
|---|
| 404 | //!@} | 
|---|
| 405 |  | 
|---|
| 406 | } //namespace itpp | 
|---|
| 407 |  | 
|---|
| 408 | #endif // #ifndef LS_SOLVE_H | 
|---|
| 409 |  | 
|---|
| 410 |  | 
|---|