1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definitions of functions for solving linear equation systems |
---|
4 | * \author Tony Ottosson |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef LS_SOLVE_H |
---|
31 | #define LS_SOLVE_H |
---|
32 | |
---|
33 | #include <itpp/base/mat.h> |
---|
34 | |
---|
35 | |
---|
36 | namespace itpp { |
---|
37 | |
---|
38 | |
---|
39 | /*! \addtogroup linearequations |
---|
40 | */ |
---|
41 | //!@{ |
---|
42 | |
---|
43 | /*! \brief Solve linear equation system by LU factorisation. |
---|
44 | |
---|
45 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. |
---|
46 | Uses the LAPACK routine DGESV. |
---|
47 | */ |
---|
48 | bool ls_solve(const mat &A, const vec &b, vec &x); |
---|
49 | |
---|
50 | /*! \brief Solve linear equation system by LU factorisation. |
---|
51 | |
---|
52 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. |
---|
53 | Uses the LAPACK routine DGESV. |
---|
54 | */ |
---|
55 | vec ls_solve(const mat &A, const vec &b); |
---|
56 | |
---|
57 | /*! \brief Solve multiple linear equations by LU factorisation. |
---|
58 | |
---|
59 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. |
---|
60 | Uses the LAPACK routine DGESV. |
---|
61 | */ |
---|
62 | bool ls_solve(const mat &A, const mat &B, mat &X); |
---|
63 | |
---|
64 | /*! \brief Solve multiple linear equations by LU factorisation. |
---|
65 | |
---|
66 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. |
---|
67 | Uses the LAPACK routine DGESV. |
---|
68 | */ |
---|
69 | mat ls_solve(const mat &A, const mat &B); |
---|
70 | |
---|
71 | |
---|
72 | /*! \brief Solve linear equation system by LU factorisation. |
---|
73 | |
---|
74 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. |
---|
75 | Uses the LAPACK routine ZGESV. |
---|
76 | */ |
---|
77 | bool ls_solve(const cmat &A, const cvec &b, cvec &x); |
---|
78 | |
---|
79 | /*! \brief Solve linear equation system by LU factorisation. |
---|
80 | |
---|
81 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. |
---|
82 | Uses the LAPACK routine ZGESV. |
---|
83 | */ |
---|
84 | cvec ls_solve(const cmat &A, const cvec &b); |
---|
85 | |
---|
86 | /*! \brief Solve multiple linear equations by LU factorisation. |
---|
87 | |
---|
88 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. |
---|
89 | Uses the LAPACK routine ZGESV. |
---|
90 | */ |
---|
91 | bool ls_solve(const cmat &A, const cmat &B, cmat &X); |
---|
92 | |
---|
93 | /*! \brief Solve multiple linear equations by LU factorisation. |
---|
94 | |
---|
95 | Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. |
---|
96 | Uses the LAPACK routine ZGESV. |
---|
97 | */ |
---|
98 | cmat ls_solve(const cmat &A, const cmat &B); |
---|
99 | |
---|
100 | |
---|
101 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
102 | |
---|
103 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. |
---|
104 | Uses the LAPACK routine DPOSV. |
---|
105 | */ |
---|
106 | bool ls_solve_chol(const mat &A, const vec &b, vec &x); |
---|
107 | |
---|
108 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
109 | |
---|
110 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. |
---|
111 | Uses the LAPACK routine DPOSV. |
---|
112 | */ |
---|
113 | vec ls_solve_chol(const mat &A, const vec &b); |
---|
114 | |
---|
115 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
116 | |
---|
117 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. |
---|
118 | Uses the LAPACK routine DPOSV. |
---|
119 | */ |
---|
120 | bool ls_solve_chol(const mat &A, const mat &B, mat &X); |
---|
121 | |
---|
122 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
123 | |
---|
124 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric postive definite \f$n \times n\f$ matrix. |
---|
125 | Uses the LAPACK routine DPOSV. |
---|
126 | */ |
---|
127 | mat ls_solve_chol(const mat &A, const mat &B); |
---|
128 | |
---|
129 | |
---|
130 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
131 | |
---|
132 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. |
---|
133 | Uses the LAPACK routine ZPOSV. |
---|
134 | */ |
---|
135 | bool ls_solve_chol(const cmat &A, const cvec &b, cvec &x); |
---|
136 | |
---|
137 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
138 | |
---|
139 | Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. |
---|
140 | Uses the LAPACK routine ZPOSV. |
---|
141 | */ |
---|
142 | cvec ls_solve_chol(const cmat &A, const cvec &b); |
---|
143 | |
---|
144 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
145 | |
---|
146 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. |
---|
147 | Uses the LAPACK routine ZPOSV. |
---|
148 | */ |
---|
149 | bool ls_solve_chol(const cmat &A, const cmat &B, cmat &X); |
---|
150 | |
---|
151 | /*! \brief Solve linear equation system by Cholesky factorisation. |
---|
152 | |
---|
153 | Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian postive definite \f$n \times n\f$ matrix. |
---|
154 | Uses the LAPACK routine ZPOSV. |
---|
155 | */ |
---|
156 | cmat ls_solve_chol(const cmat &A, const cmat &B); |
---|
157 | |
---|
158 | |
---|
159 | |
---|
160 | /*! \brief Solves overdetermined linear equation systems. |
---|
161 | |
---|
162 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
163 | Uses QR-factorization and is built upon the LAPACK routine DGELS. |
---|
164 | */ |
---|
165 | bool ls_solve_od(const mat &A, const vec &b, vec &x); |
---|
166 | |
---|
167 | /*! \brief Solves overdetermined linear equation systems. |
---|
168 | |
---|
169 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
170 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
171 | */ |
---|
172 | vec ls_solve_od(const mat &A, const vec &b); |
---|
173 | |
---|
174 | /*! \brief Solves overdetermined linear equation systems. |
---|
175 | |
---|
176 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
177 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
178 | */ |
---|
179 | bool ls_solve_od(const mat &A, const mat &B, mat &X); |
---|
180 | |
---|
181 | /*! \brief Solves overdetermined linear equation systems. |
---|
182 | |
---|
183 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
184 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
185 | */ |
---|
186 | mat ls_solve_od(const mat &A, const mat &B); |
---|
187 | |
---|
188 | |
---|
189 | /*! \brief Solves overdetermined linear equation systems. |
---|
190 | |
---|
191 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
192 | Uses QR-factorization and is built upon the LAPACK routine ZGELS. |
---|
193 | */ |
---|
194 | bool ls_solve_od(const cmat &A, const cvec &b, cvec &x); |
---|
195 | |
---|
196 | /*! \brief Solves overdetermined linear equation systems. |
---|
197 | |
---|
198 | Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
199 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
200 | */ |
---|
201 | cvec ls_solve_od(const cmat &A, const cvec &b); |
---|
202 | |
---|
203 | /*! \brief Solves overdetermined linear equation systems. |
---|
204 | |
---|
205 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
206 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
207 | */ |
---|
208 | bool ls_solve_od(const cmat &A, const cmat &B, cmat &X); |
---|
209 | |
---|
210 | /*! \brief Solves overdetermined linear equation systems. |
---|
211 | |
---|
212 | Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. |
---|
213 | Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
214 | */ |
---|
215 | cmat ls_solve_od(const cmat &A, const cmat &B); |
---|
216 | |
---|
217 | |
---|
218 | |
---|
219 | /*! \brief Solves underdetermined linear equation systems. |
---|
220 | |
---|
221 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
222 | Uses LQ-factorization and is built upon the LAPACK routine DGELS. |
---|
223 | */ |
---|
224 | bool ls_solve_ud(const mat &A, const vec &b, vec &x); |
---|
225 | |
---|
226 | /*! \brief Solves overdetermined linear equation systems. |
---|
227 | |
---|
228 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
229 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
230 | */ |
---|
231 | vec ls_solve_ud(const mat &A, const vec &b); |
---|
232 | |
---|
233 | /*! \brief Solves underdetermined linear equation systems. |
---|
234 | |
---|
235 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
236 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
237 | */ |
---|
238 | bool ls_solve_ud(const mat &A, const mat &B, mat &X); |
---|
239 | |
---|
240 | /*! \brief Solves underdetermined linear equation systems. |
---|
241 | |
---|
242 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
243 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. |
---|
244 | */ |
---|
245 | mat ls_solve_ud(const mat &A, const mat &B); |
---|
246 | |
---|
247 | |
---|
248 | /*! \brief Solves underdetermined linear equation systems. |
---|
249 | |
---|
250 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
251 | Uses LQ-factorization and is built upon the LAPACK routine ZGELS. |
---|
252 | */ |
---|
253 | bool ls_solve_ud(const cmat &A, const cvec &b, cvec &x); |
---|
254 | |
---|
255 | /*! \brief Solves overdetermined linear equation systems. |
---|
256 | |
---|
257 | Solves the underdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
258 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
259 | */ |
---|
260 | cvec ls_solve_ud(const cmat &A, const cvec &b); |
---|
261 | |
---|
262 | /*! \brief Solves underdetermined linear equation systems. |
---|
263 | |
---|
264 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
265 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
266 | */ |
---|
267 | bool ls_solve_ud(const cmat &A, const cmat &B, cmat &X); |
---|
268 | |
---|
269 | /*! \brief Solves underdetermined linear equation systems. |
---|
270 | |
---|
271 | Solves the underdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \leq n\f$. |
---|
272 | Uses LQ-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. |
---|
273 | */ |
---|
274 | cmat ls_solve_ud(const cmat &A, const cmat &B); |
---|
275 | |
---|
276 | |
---|
277 | /*! \brief A general linear equation system solver. |
---|
278 | |
---|
279 | Tries to emulate the backslash operator in Matlab by calling |
---|
280 | ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x) |
---|
281 | */ |
---|
282 | bool backslash(const mat &A, const vec &b, vec &x); |
---|
283 | |
---|
284 | /*! \brief A general linear equation system solver. |
---|
285 | |
---|
286 | Tries to emulate the backslash operator in Matlab by calling |
---|
287 | ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b) |
---|
288 | */ |
---|
289 | vec backslash(const mat &A, const vec &b); |
---|
290 | |
---|
291 | /*! \brief A general linear equation system solver. |
---|
292 | |
---|
293 | Tries to emulate the backslash operator in Matlab by calling |
---|
294 | ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X). |
---|
295 | */ |
---|
296 | bool backslash(const mat &A, const mat &B, mat &X); |
---|
297 | |
---|
298 | /*! \brief A general linear equation system solver. |
---|
299 | |
---|
300 | Tries to emulate the backslash operator in Matlab by calling |
---|
301 | ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B). |
---|
302 | */ |
---|
303 | mat backslash(const mat &A, const mat &B); |
---|
304 | |
---|
305 | |
---|
306 | /*! \brief A general linear equation system solver. |
---|
307 | |
---|
308 | Tries to emulate the backslash operator in Matlab by calling |
---|
309 | ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x) |
---|
310 | */ |
---|
311 | bool backslash(const cmat &A, const cvec &b, cvec &x); |
---|
312 | |
---|
313 | /*! \brief A general linear equation system solver. |
---|
314 | |
---|
315 | Tries to emulate the backslash operator in Matlab by calling |
---|
316 | ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b) |
---|
317 | */ |
---|
318 | cvec backslash(const cmat &A, const cvec &b); |
---|
319 | |
---|
320 | /*! \brief A general linear equation system solver. |
---|
321 | |
---|
322 | Tries to emulate the backslash operator in Matlab by calling |
---|
323 | ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X). |
---|
324 | */ |
---|
325 | bool backslash(const cmat &A, const cmat &B, cmat &X); |
---|
326 | |
---|
327 | /*! \brief A general linear equation system solver. |
---|
328 | |
---|
329 | Tries to emulate the backslash operator in Matlab by calling |
---|
330 | ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B). |
---|
331 | */ |
---|
332 | cmat backslash(const cmat &A, const cmat &B); |
---|
333 | |
---|
334 | |
---|
335 | |
---|
336 | /*! \brief Forward substitution of square matrix. |
---|
337 | |
---|
338 | Solves Lx=b, where L is a lower triangular n by n matrix. |
---|
339 | Assumes that L is nonsingular. Requires n^2 flops. |
---|
340 | Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. |
---|
341 | */ |
---|
342 | vec forward_substitution(const mat &L, const vec &b); |
---|
343 | |
---|
344 | /*! \brief Forward substitution of square matrix. |
---|
345 | |
---|
346 | Solves Lx=b, where L is a lower triangular n by n matrix. |
---|
347 | Assumes that L is nonsingular. Requires n^2 flops. |
---|
348 | Uses Alg. 3.1.1 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. |
---|
349 | */ |
---|
350 | void forward_substitution(const mat &L, const vec &b, vec &x); |
---|
351 | |
---|
352 | /*! \brief Forward substitution of band matricies. |
---|
353 | |
---|
354 | Solves Lx=b, where L is a lower triangular n by n band-matrix with lower |
---|
355 | bandwidth p. |
---|
356 | Assumes that L is nonsingular. Requires about 2np flops (if n >> p). |
---|
357 | Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. |
---|
358 | */ |
---|
359 | vec forward_substitution(const mat &L, int p, const vec &b); |
---|
360 | |
---|
361 | /*! \brief Forward substitution of band matricies. |
---|
362 | |
---|
363 | Solves Lx=b, where L is a lower triangular n by n band-matrix with |
---|
364 | lower bandwidth p. |
---|
365 | Assumes that L is nonsingular. Requires about 2np flops (if n >> p). |
---|
366 | Uses Alg. 4.3.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. |
---|
367 | */ |
---|
368 | void forward_substitution(const mat &L, int p, const vec &b, vec &x); |
---|
369 | |
---|
370 | /*! \brief Backward substitution of square matrix. |
---|
371 | |
---|
372 | Solves Ux=b, where U is a upper triangular n by n matrix. |
---|
373 | Assumes that U is nonsingular. Requires n^2 flops. |
---|
374 | Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. |
---|
375 | */ |
---|
376 | vec backward_substitution(const mat &U, const vec &b); |
---|
377 | |
---|
378 | /*! \brief Backward substitution of square matrix. |
---|
379 | |
---|
380 | Solves Ux=b, where U is a upper triangular n by n matrix. |
---|
381 | Assumes that U is nonsingular. Requires n^2 flops. |
---|
382 | Uses Alg. 3.1.2 in Golub & van Loan "Matrix computations", 3rd ed., p. 89. |
---|
383 | */ |
---|
384 | void backward_substitution(const mat &U, const vec &b, vec &x); |
---|
385 | |
---|
386 | /*! \brief Backward substitution of band matrix. |
---|
387 | |
---|
388 | Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with |
---|
389 | upper bandwidth q. |
---|
390 | Assumes that U is nonsingular. Requires about 2nq flops (if n >> q). |
---|
391 | Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. |
---|
392 | */ |
---|
393 | vec backward_substitution(const mat &U, int q, const vec &b); |
---|
394 | |
---|
395 | /*! \brief Backward substitution of band matrix. |
---|
396 | |
---|
397 | Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with |
---|
398 | upper bandwidth q. |
---|
399 | Assumes that U is nonsingular. Requires about 2nq flops (if n >> q). |
---|
400 | Uses Alg. 4.3.3 in Golub & van Loan "Matrix computations", 3rd ed., p. 153. |
---|
401 | */ |
---|
402 | void backward_substitution(const mat &U, int q, const vec &b, vec &x); |
---|
403 | |
---|
404 | //!@} |
---|
405 | |
---|
406 | } //namespace itpp |
---|
407 | |
---|
408 | #endif // #ifndef LS_SOLVE_H |
---|
409 | |
---|
410 | |
---|