root/win32/itpp-4.0.1/itpp/base/algebra/qr.h @ 121

Revision 35, 3.5 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of QR factorisation functions
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef QR_H
31#define QR_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38
39  /*! \addtogroup matrixdecomp
40   */
41  //!@{
42  /*!
43    \brief QR factorisation of real matrix
44
45    The QR factorization of the real matrix \f$\mathbf{A}\f$ of size \f$m \times n\f$ is given
46    by
47    \f[
48    \mathbf{A} = \mathbf{Q} \mathbf{R} ,
49    \f]
50    where \f$\mathbf{Q}\f$ is an \f$m \times m\f$ orthogonal matrix and \f$\mathbf{R}\f$ is an \f$m \times n\f$ upper triangular matrix.
51
52    Returns true is calculation succeeds. False otherwise.
53    Uses the LAPACK routine DGEQRF and DORGQR.
54  */
55  bool qr(const mat &A, mat &Q, mat &R);
56
57  /*!
58    \brief QR factorisation of real matrix with pivoting
59
60    The QR factorization of the real matrix \f$\mathbf{A}\f$ of size \f$m \times n\f$ is given
61    by
62    \f[
63    \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} ,
64    \f]
65    where \f$\mathbf{Q}\f$ is an \f$m \times m\f$ orthogonal matrix, \f$\mathbf{R}\f$ is an \f$m \times n\f$ upper triangular matrix
66    and \f$\mathbf{P}\f$ is an \f$n \times n\f$ permutation matrix.
67
68    Returns true is calculation succeeds. False otherwise.
69    Uses the LAPACK routines DGEQP3 and DORGQR.
70  */
71  bool qr(const mat &A, mat &Q, mat &R, bmat &P);
72
73  /*!
74    \brief QR factorisation of a complex matrix
75
76    The QR factorization of the complex matrix \f$\mathbf{A}\f$ of size \f$m \times n\f$ is given
77    by
78    \f[
79    \mathbf{A} = \mathbf{Q} \mathbf{R} ,
80    \f]
81    where \f$\mathbf{Q}\f$ is an \f$m \times m\f$ unitary matrix and \f$\mathbf{R}\f$ is an \f$m \times n\f$ upper triangular matrix.
82
83    Returns true is calculation succeeds. False otherwise.
84    Uses the LAPACK routines ZGEQRF and ZUNGQR.
85  */
86  bool qr(const cmat &A, cmat &Q, cmat &R);
87
88  /*!
89    \brief QR factorisation of a complex matrix with pivoting
90
91    The QR factorization of the complex matrix \f$\mathbf{A}\f$ of size \f$m \times n\f$ is given
92    by
93    \f[
94    \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} ,
95    \f]
96    where \f$\mathbf{Q}\f$ is an \f$m \times m\f$ unitary matrix, \f$\mathbf{R}\f$ is an \f$m \times n\f$ upper triangular matrix
97    and \f$\mathbf{P}\f$ is an \f$n \times n\f$ permutation matrix.
98
99    Returns true is calculation succeeds. False otherwise.
100    Uses the LAPACK routines ZGEQP3 and ZUNGQR.
101  */
102  bool qr(const cmat &A, cmat &Q, cmat &R, bmat &P);
103
104  //!@}
105
106
107} // namespace itpp
108
109#endif // #ifndef QR_H
Note: See TracBrowser for help on using the browser.