1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definitions of Schur decomposition functions |
---|
4 | * \author Adam Piatyszek |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef SCHUR_H |
---|
31 | #define SCHUR_H |
---|
32 | |
---|
33 | #include <itpp/base/mat.h> |
---|
34 | |
---|
35 | |
---|
36 | namespace itpp { |
---|
37 | |
---|
38 | /*! |
---|
39 | * \ingroup matrixdecomp |
---|
40 | * \brief Schur decomposition of a real matrix |
---|
41 | * |
---|
42 | * This function computes the Schur form of a square real matrix |
---|
43 | * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the |
---|
44 | * following equation: |
---|
45 | * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f] |
---|
46 | * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper |
---|
47 | * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed |
---|
48 | * \f$ \mathbf{U} \f$ matrix. |
---|
49 | * |
---|
50 | * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on |
---|
51 | * its diagonal. |
---|
52 | * |
---|
53 | * Uses the LAPACK routine DGEES. |
---|
54 | */ |
---|
55 | bool schur(const mat &A, mat &U, mat &T); |
---|
56 | |
---|
57 | /*! |
---|
58 | * \ingroup matrixdecomp |
---|
59 | * \brief Schur decomposition of a real matrix |
---|
60 | * |
---|
61 | * This function computes the Schur form of a square real matrix |
---|
62 | * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the |
---|
63 | * following equation: |
---|
64 | * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f] |
---|
65 | * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper |
---|
66 | * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed |
---|
67 | * \f$ \mathbf{U} \f$ matrix. |
---|
68 | * |
---|
69 | * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on |
---|
70 | * its diagonal. |
---|
71 | * |
---|
72 | * \return Real Schur matrix \f$ \mathbf{T} \f$ |
---|
73 | * |
---|
74 | * uses the LAPACK routine DGEES. |
---|
75 | */ |
---|
76 | mat schur(const mat &A); |
---|
77 | |
---|
78 | |
---|
79 | /*! |
---|
80 | * \ingroup matrixdecomp |
---|
81 | * \brief Schur decomposition of a complex matrix |
---|
82 | * |
---|
83 | * This function computes the Schur form of a square complex matrix |
---|
84 | * \f$ \mathbf{A} \f$. The Schur decomposition satisfies |
---|
85 | * the following equation: |
---|
86 | * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f] |
---|
87 | * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper |
---|
88 | * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian |
---|
89 | * transposition of the \f$ \mathbf{U} \f$ matrix. |
---|
90 | * |
---|
91 | * Uses the LAPACK routine ZGEES. |
---|
92 | */ |
---|
93 | bool schur(const cmat &A, cmat &U, cmat &T); |
---|
94 | |
---|
95 | /*! |
---|
96 | * \ingroup matrixdecomp |
---|
97 | * \brief Schur decomposition of a complex matrix |
---|
98 | * |
---|
99 | * This function computes the Schur form of a square complex matrix |
---|
100 | * \f$ \mathbf{A} \f$. The Schur decomposition satisfies |
---|
101 | * the following equation: |
---|
102 | * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f] |
---|
103 | * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper |
---|
104 | * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian |
---|
105 | * transposition of the \f$ \mathbf{U} \f$ matrix. |
---|
106 | * |
---|
107 | * \return Complex Schur matrix \f$ \mathbf{T} \f$ |
---|
108 | * |
---|
109 | * Uses the LAPACK routine ZGEES. |
---|
110 | */ |
---|
111 | cmat schur(const cmat &A); |
---|
112 | |
---|
113 | |
---|
114 | } // namespace itpp |
---|
115 | |
---|
116 | #endif // #ifndef SCHUR_H |
---|