root/win32/itpp-4.0.1/itpp/base/algebra/svd.h @ 100

Revision 35, 6.3 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of Singular Value Decompositions
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef SVD_H
31#define SVD_H
32
33#include <itpp/base/mat.h>
34
35
36namespace itpp {
37
38  /*!
39   * \ingroup matrixdecomp
40   * \brief Get singular values \c s of a real matrix \c A using SVD
41   *
42   * This function calculates singular values \f$s\f$ from the SVD
43   * decomposition of a real matrix \f$A\f$. The SVD algorithm computes the
44   * decomposition of a real \f$m \times n\f$ matrix \f$\mathbf{A}\f$ so
45   * that
46   * \f[
47   * \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s}
48   * = \sigma_1, \ldots, \sigma_p
49   * \f]
50   * where \f$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0\f$ are the
51   * singular values of \f$\mathbf{A}\f$.
52   * Or put differently:
53   * \f[
54   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T
55   * \f]
56   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
57   *
58   * \note An external LAPACK library is required by this function.
59   */
60  bool svd(const mat &A, vec &s);
61
62  /*!
63   * \ingroup matrixdecomp
64   * \brief Get singular values \c s of a complex matrix \c A using SVD
65   *
66   * This function calculates singular values \f$s\f$ from the SVD
67   * decomposition of a complex matrix \f$A\f$. The SVD algorithm computes
68   * the decomposition of a complex \f$m \times n\f$ matrix \f$\mathbf{A}\f$
69   * so that
70   * \f[
71   * \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s}
72   * = \sigma_1, \ldots, \sigma_p
73   * \f]
74   * where \f$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0\f$
75   * are the singular values of \f$\mathbf{A}\f$.
76   * Or put differently:
77   * \f[
78   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H
79   * \f]
80   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
81   *
82   * \note An external LAPACK library is required by this function.
83   */
84  bool svd(const cmat &A, vec &s);
85
86/*!
87   * \ingroup matrixdecomp
88   * \brief Return singular values of a real matrix \c A using SVD
89   *
90   * This function returns singular values from the SVD decomposition
91   * of a real matrix \f$A\f$. The SVD algorithm computes the decomposition
92   * of a real \f$m \times n\f$ matrix \f$\mathbf{A}\f$ so that
93   * \f[
94   * \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s}
95   * = \sigma_1, \ldots, \sigma_p
96   * \f]
97   * where \f$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0\f$ are the
98   * singular values of \f$\mathbf{A}\f$.
99   * Or put differently:
100   * \f[
101   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T
102   * \f]
103   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
104   *
105   * \note An external LAPACK library is required by this function.
106   */
107  vec svd(const mat &A);
108
109  /*!
110   * \ingroup matrixdecomp
111   * \brief Return singular values of a complex matrix \c A using SVD
112   *
113   * This function returns singular values from the SVD
114   * decomposition of a complex matrix \f$A\f$. The SVD algorithm computes
115   * the decomposition of a complex \f$m \times n\f$ matrix \f$\mathbf{A}\f$
116   * so that
117   * \f[
118   * \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s}
119   * = \sigma_1, \ldots, \sigma_p
120   * \f]
121   * where \f$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0\f$
122   * are the singular values of \f$\mathbf{A}\f$.
123   * Or put differently:
124   * \f[
125   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H
126   * \f]
127   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
128   *
129   * \note An external LAPACK library is required by this function.
130   */
131  vec svd(const cmat &A);
132
133  /*!
134   * \ingroup matrixdecomp
135   * \brief Perform Singular Value Decomposition (SVD) of a real matrix \c A
136   *
137   * This function returns two orthonormal matrices \f$U\f$ and \f$V\f$
138   * and a vector of singular values \f$s\f$.
139   * The SVD algorithm computes the decomposition of a real \f$m \times n\f$
140   * matrix \f$\mathbf{A}\f$ so that
141   * \f[
142   * \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s}
143   * = \sigma_1, \ldots, \sigma_p
144   * \f]
145   * where the elements of \f$\mathbf{s}\f$, \f$\sigma_1 \geq \sigma_2 \geq
146   * \ldots \sigma_p \geq 0\f$ are the singular values of \f$\mathbf{A}\f$.
147   * Or put differently:
148   * \f[
149   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T
150   * \f]
151   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
152   *
153   * \note An external LAPACK library is required by this function.
154   */
155  bool svd(const mat &A, mat &U, vec &s, mat &V);
156
157  /*!
158   * \ingroup matrixdecomp
159   * \brief Perform Singular Value Decomposition (SVD) of a complex matrix \c A
160   *
161   * This function returns two orthonormal matrices \f$U\f$ and \f$V\f$
162   * and a vector of singular values \f$s\f$.
163   * The SVD algorithm computes the decomposition of a complex \f$m \times n\f$
164   * matrix \f$\mathbf{A}\f$ so that
165   * \f[
166   * \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s}
167   * = \sigma_1, \ldots, \sigma_p
168   * \f]
169   * where the elements of \f$\mathbf{s}\f$, \f$\sigma_1 \geq \sigma_2 \geq
170   * \ldots \sigma_p \geq 0\f$ are the singular values of \f$\mathbf{A}\f$.
171   * Or put differently:
172   * \f[
173   * \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H
174   * \f]
175   * where \f$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} \f$
176   *
177   * \note An external LAPACK library is required by this function.
178   */
179  bool svd(const cmat &A, cmat &U, vec &s, cmat &V);
180
181
182} // namespace itpp
183
184#endif // #ifndef SVD_H
Note: See TracBrowser for help on using the browser.