1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definitions of Bessel functions |
---|
4 | * \author Tony Ottosson |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef BESSEL_H |
---|
31 | #define BESSEL_H |
---|
32 | |
---|
33 | #include <itpp/base/vec.h> |
---|
34 | |
---|
35 | |
---|
36 | namespace itpp { |
---|
37 | |
---|
38 | /*! \addtogroup besselfunctions |
---|
39 | */ |
---|
40 | |
---|
41 | /*! |
---|
42 | \ingroup besselfunctions |
---|
43 | \brief Bessel function of first kind of order \a nu for \a nu integer |
---|
44 | |
---|
45 | The bessel function of first kind is defined as: |
---|
46 | \f[ |
---|
47 | J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k} |
---|
48 | \f] |
---|
49 | where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. |
---|
50 | */ |
---|
51 | double besselj(int nu, double x); |
---|
52 | |
---|
53 | /*! |
---|
54 | \ingroup besselfunctions |
---|
55 | \brief Bessel function of first kind of order \a nu for \a nu integer |
---|
56 | */ |
---|
57 | vec besselj(int nu, const vec &x); |
---|
58 | |
---|
59 | /*! |
---|
60 | \ingroup besselfunctions |
---|
61 | \brief Bessel function of first kind of order \a nu. \a nu is real. |
---|
62 | */ |
---|
63 | double besselj(double nu, double x); |
---|
64 | |
---|
65 | /*! |
---|
66 | \ingroup besselfunctions |
---|
67 | \brief Bessel function of first kind of order \a nu. \a nu is real. |
---|
68 | */ |
---|
69 | vec besselj(double nu, const vec &x); |
---|
70 | |
---|
71 | /*! |
---|
72 | \ingroup besselfunctions |
---|
73 | \brief Bessel function of second kind of order \a nu. \a nu is integer. |
---|
74 | |
---|
75 | The Bessel function of second kind is defined as: |
---|
76 | \f[ |
---|
77 | Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} |
---|
78 | \f] |
---|
79 | where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. |
---|
80 | */ |
---|
81 | double bessely(int nu, double x); |
---|
82 | |
---|
83 | /*! |
---|
84 | \ingroup besselfunctions |
---|
85 | \brief Bessel function of second kind of order \a nu. \a nu is integer. |
---|
86 | */ |
---|
87 | vec bessely(int nu, const vec &x); |
---|
88 | |
---|
89 | /*! |
---|
90 | \ingroup besselfunctions |
---|
91 | \brief Bessel function of second kind of order \a nu. \a nu is real. |
---|
92 | */ |
---|
93 | double bessely(double nu, double x); |
---|
94 | |
---|
95 | /*! |
---|
96 | \ingroup besselfunctions |
---|
97 | \brief Bessel function of second kind of order \a nu. \a nu is real. |
---|
98 | */ |
---|
99 | vec bessely(double nu, const vec &x); |
---|
100 | |
---|
101 | /*! |
---|
102 | \ingroup besselfunctions |
---|
103 | \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double. |
---|
104 | |
---|
105 | The Modified Bessel function of first kind is defined as: |
---|
106 | \f[ |
---|
107 | I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) |
---|
108 | \f] |
---|
109 | where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. |
---|
110 | */ |
---|
111 | double besseli(double nu, double x); |
---|
112 | |
---|
113 | /*! |
---|
114 | \ingroup besselfunctions |
---|
115 | \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double. |
---|
116 | */ |
---|
117 | vec besseli(double nu, const vec &x); |
---|
118 | |
---|
119 | /*! |
---|
120 | \ingroup besselfunctions |
---|
121 | \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double. |
---|
122 | |
---|
123 | The Modified Bessel function of second kind is defined as: |
---|
124 | \f[ |
---|
125 | K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)] |
---|
126 | \f] |
---|
127 | where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. |
---|
128 | */ |
---|
129 | double besselk(int nu, double x); |
---|
130 | |
---|
131 | /*! |
---|
132 | \ingroup besselfunctions |
---|
133 | \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double. |
---|
134 | */ |
---|
135 | vec besselk(int nu, const vec &x); |
---|
136 | |
---|
137 | } //namespace itpp |
---|
138 | |
---|
139 | #endif // #ifndef BESSEL_H |
---|