/*! * \file * \brief Definitions of Bessel functions * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */ #ifndef BESSEL_H #define BESSEL_H #include namespace itpp { /*! \addtogroup besselfunctions */ /*! \ingroup besselfunctions \brief Bessel function of first kind of order \a nu for \a nu integer The bessel function of first kind is defined as: \f[ J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k} \f] where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. */ double besselj(int nu, double x); /*! \ingroup besselfunctions \brief Bessel function of first kind of order \a nu for \a nu integer */ vec besselj(int nu, const vec &x); /*! \ingroup besselfunctions \brief Bessel function of first kind of order \a nu. \a nu is real. */ double besselj(double nu, double x); /*! \ingroup besselfunctions \brief Bessel function of first kind of order \a nu. \a nu is real. */ vec besselj(double nu, const vec &x); /*! \ingroup besselfunctions \brief Bessel function of second kind of order \a nu. \a nu is integer. The Bessel function of second kind is defined as: \f[ Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} \f] where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. */ double bessely(int nu, double x); /*! \ingroup besselfunctions \brief Bessel function of second kind of order \a nu. \a nu is integer. */ vec bessely(int nu, const vec &x); /*! \ingroup besselfunctions \brief Bessel function of second kind of order \a nu. \a nu is real. */ double bessely(double nu, double x); /*! \ingroup besselfunctions \brief Bessel function of second kind of order \a nu. \a nu is real. */ vec bessely(double nu, const vec &x); /*! \ingroup besselfunctions \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double. The Modified Bessel function of first kind is defined as: \f[ I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \f] where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. */ double besseli(double nu, double x); /*! \ingroup besselfunctions \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double. */ vec besseli(double nu, const vec &x); /*! \ingroup besselfunctions \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double. The Modified Bessel function of second kind is defined as: \f[ K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)] \f] where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$. */ double besselk(int nu, double x); /*! \ingroup besselfunctions \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double. */ vec besselk(int nu, const vec &x); } //namespace itpp #endif // #ifndef BESSEL_H