root/win32/itpp-4.0.1/itpp/base/bessel.h @ 68

Revision 35, 4.0 kB (checked in by mido, 17 years ago)

zasadni zmeny ve /win32

Line 
1/*!
2 * \file
3 * \brief Definitions of Bessel functions
4 * \author Tony Ottosson
5 *
6 * -------------------------------------------------------------------------
7 *
8 * IT++ - C++ library of mathematical, signal processing, speech processing,
9 *        and communications classes and functions
10 *
11 * Copyright (C) 1995-2007  (see AUTHORS file for a list of contributors)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 * -------------------------------------------------------------------------
28 */
29
30#ifndef BESSEL_H
31#define BESSEL_H
32
33#include <itpp/base/vec.h>
34
35
36namespace itpp {
37
38  /*! \addtogroup besselfunctions
39   */
40
41  /*!
42    \ingroup besselfunctions
43    \brief Bessel function of first kind of order \a nu for \a nu integer
44
45    The bessel function of first kind is defined as:
46    \f[
47    J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k}
48    \f]
49    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
50  */
51  double besselj(int nu, double x);
52
53  /*!
54    \ingroup besselfunctions
55    \brief Bessel function of first kind of order \a nu for \a nu integer
56  */
57  vec besselj(int nu, const vec &x);
58
59  /*!
60    \ingroup besselfunctions
61    \brief Bessel function of first kind of order \a nu. \a nu is real.
62  */
63  double besselj(double nu, double x);
64
65  /*!
66    \ingroup besselfunctions
67    \brief Bessel function of first kind of order \a nu. \a nu is real.
68  */
69  vec besselj(double nu, const vec &x);
70
71  /*!
72    \ingroup besselfunctions
73    \brief Bessel function of second kind of order \a nu. \a nu is integer.
74
75    The Bessel function of second kind is defined as:
76    \f[
77    Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}
78    \f]
79    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
80  */
81  double bessely(int nu, double x);
82
83  /*!
84    \ingroup besselfunctions
85    \brief Bessel function of second kind of order \a nu. \a nu is integer.
86  */
87  vec bessely(int nu, const vec &x);
88
89  /*!
90    \ingroup besselfunctions
91    \brief Bessel function of second kind of order \a nu. \a nu is real.
92  */
93  double bessely(double nu, double x);
94
95  /*!
96    \ingroup besselfunctions
97    \brief Bessel function of second kind of order \a nu. \a nu is real.
98  */
99  vec bessely(double nu, const vec &x);
100
101  /*!
102    \ingroup besselfunctions
103    \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
104
105    The Modified Bessel function of first kind is defined as:
106    \f[
107    I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)
108    \f]
109    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
110  */
111  double besseli(double nu, double x);
112
113  /*!
114    \ingroup besselfunctions
115    \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
116  */
117  vec besseli(double nu, const vec &x);
118
119  /*!
120    \ingroup besselfunctions
121    \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
122
123    The Modified Bessel function of second kind is defined as:
124    \f[
125    K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)]
126    \f]
127    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
128  */
129  double besselk(int nu, double x);
130
131  /*!
132    \ingroup besselfunctions
133    \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
134  */
135  vec besselk(int nu, const vec &x);
136
137} //namespace itpp
138
139#endif // #ifndef BESSEL_H
Note: See TracBrowser for help on using the browser.