1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Base class for class factories and memory allocation functions |
---|
4 | * \author Johan Bergman and Adam Piatyszek |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef FACTORY_H |
---|
31 | #define FACTORY_H |
---|
32 | |
---|
33 | #include <complex> |
---|
34 | #include <itpp/base/binary.h> |
---|
35 | |
---|
36 | namespace itpp { |
---|
37 | |
---|
38 | // Forward declarations |
---|
39 | template<class T> class Array; |
---|
40 | template<class Num_T> class Mat; |
---|
41 | template<class Num_T> class Vec; |
---|
42 | |
---|
43 | /*! |
---|
44 | \brief Base class for class factories |
---|
45 | |
---|
46 | A class factory (or virtual constructor) is a class that can create instances |
---|
47 | of another class. Factory is a base class for such factories. When declaring |
---|
48 | an Array, Vec or Mat, a factory can be passed as an (optional) constructor |
---|
49 | argument: |
---|
50 | \code |
---|
51 | // Declare a Vec<type> with size=10 and factory=DEFAULT_FACTORY |
---|
52 | Vec<type> a(10); |
---|
53 | |
---|
54 | // Declare a Vec<type> with size=10 and factory=f |
---|
55 | Factory f; |
---|
56 | Vec<type> b(10, f); |
---|
57 | \endcode |
---|
58 | |
---|
59 | By default, the factory (\c DEFAULT_FACTORY and \c f in the above examples) |
---|
60 | is not used at all! However, by overloading a help function called |
---|
61 | \e create_elements we can force Array/Vec/Mat to use the factory for element |
---|
62 | creation (instead of using the default constructor for the element type). |
---|
63 | |
---|
64 | \note It is the \e numeric elements that will be created by the factory, |
---|
65 | i.e. for an Array<Mat<T> >, the factory will be used for creating the Mat |
---|
66 | elements rather than the Array elements. |
---|
67 | |
---|
68 | Here is an example that (partly) defines a user-defined numeric type My_Type, |
---|
69 | a corresponding factory My_Factory and a corresponding help function |
---|
70 | create_elements<My_Type> that will be used by Array, Vec and Mat for element |
---|
71 | creation. |
---|
72 | \code |
---|
73 | class My_Type { |
---|
74 | public: |
---|
75 | // Default constructor |
---|
76 | My_Type() : data(0) {} |
---|
77 | // Constructor |
---|
78 | My_Type(int d) : data(d) {} |
---|
79 | . |
---|
80 | . |
---|
81 | . |
---|
82 | protected: |
---|
83 | int data; |
---|
84 | }; |
---|
85 | |
---|
86 | class My_Factory : public Factory { |
---|
87 | public: |
---|
88 | // Constructor |
---|
89 | explicit My_Factory(int d) : init_data(d) {} |
---|
90 | // Destructor |
---|
91 | virtual ~My_Factory() {} |
---|
92 | // Create an n-length array of My_Type |
---|
93 | virtual void create(My_Type* &ptr, int n) const {ptr = new My_Type[n](init_data);} |
---|
94 | protected: |
---|
95 | int init_data; |
---|
96 | }; |
---|
97 | |
---|
98 | // Create an n-length array of My_Type using My_Factory f |
---|
99 | template<> |
---|
100 | void create_elements<My_Type>(My_Type* &ptr, int n, const Factory &f) |
---|
101 | { |
---|
102 | if (const My_Factory *my_factory_ptr = dynamic_cast<const My_Factory*>(&f)) { |
---|
103 | // Yes, f seems to be a My_Factory. Now call the My_Factory::create method |
---|
104 | my_factory_ptr->create(ptr, n); |
---|
105 | } |
---|
106 | else { |
---|
107 | // No, f does not seem to be a My_Factory. As a fallback solution, |
---|
108 | // assume that f is DEFAULT_FACTORY and use the default constructor |
---|
109 | ptr = new My_Type[n]; |
---|
110 | } |
---|
111 | } |
---|
112 | \endcode |
---|
113 | |
---|
114 | Now, |
---|
115 | \code |
---|
116 | // Declare a My_Factory for init_data = 123 |
---|
117 | My_Factory my123_factory(123); |
---|
118 | |
---|
119 | // Declare a Vec<My_Type> with size 10 that uses My_Type() for element creation |
---|
120 | Vec<My_Type> v1(10); |
---|
121 | |
---|
122 | // Declare a Vec<My_Type> with size 10 that uses My_Type(123) for element creation |
---|
123 | Vec<My_Type> v1(10, my123_factory); |
---|
124 | \endcode |
---|
125 | |
---|
126 | For a more interesting example, see Fix_Factory. |
---|
127 | */ |
---|
128 | class Factory { |
---|
129 | public: |
---|
130 | //! Default constructor |
---|
131 | Factory() {} |
---|
132 | //! Destructor |
---|
133 | virtual ~Factory() {} |
---|
134 | }; |
---|
135 | |
---|
136 | //! Default (dummy) factory |
---|
137 | const Factory DEFAULT_FACTORY; |
---|
138 | |
---|
139 | |
---|
140 | //! Create an n-length array of T to be used as Array, Vec or Mat elements |
---|
141 | template<class T> |
---|
142 | void create_elements(T* &ptr, int n, const Factory &) |
---|
143 | { |
---|
144 | void *p = operator new(sizeof(T) * n); |
---|
145 | ptr = reinterpret_cast<T*>(p); |
---|
146 | for (int i = 0; i < n; i++) { |
---|
147 | new (ptr + i) T(); |
---|
148 | } |
---|
149 | } |
---|
150 | |
---|
151 | |
---|
152 | //! Specialization for unsigned char data arrays (used in GF2Mat) |
---|
153 | template<> |
---|
154 | void create_elements<unsigned char>(unsigned char* &ptr, int n, |
---|
155 | const Factory &); |
---|
156 | //! Specialization for binary data arrays |
---|
157 | template<> |
---|
158 | void create_elements<bin>(bin* &ptr, int n, const Factory &); |
---|
159 | //! Specialization for short integer data arrays |
---|
160 | template<> |
---|
161 | void create_elements<short int>(short int* &ptr, int n, const Factory &); |
---|
162 | //! Specialization for integer data arrays |
---|
163 | template<> |
---|
164 | void create_elements<int>(int* &ptr, int n, const Factory &); |
---|
165 | //! Specialization for 16-byte aligned double data arrays |
---|
166 | template<> |
---|
167 | void create_elements<double>(double* &ptr, int n, const Factory &); |
---|
168 | //! Specialization for 16-byte aligned complex double data arrays |
---|
169 | template<> |
---|
170 | void create_elements<std::complex<double> >(std::complex<double>* &ptr, int n, const Factory &); |
---|
171 | |
---|
172 | |
---|
173 | //! Destroy an array of Array, Vec or Mat elements |
---|
174 | template<class T> |
---|
175 | void destroy_elements(T* &ptr, int n) |
---|
176 | { |
---|
177 | if (ptr) { |
---|
178 | for (int i = 0; i < n; ++i) { |
---|
179 | ptr[i].~T(); |
---|
180 | } |
---|
181 | void *p = reinterpret_cast<void*>(ptr); |
---|
182 | operator delete(p); |
---|
183 | ptr = 0; |
---|
184 | } |
---|
185 | } |
---|
186 | |
---|
187 | //! Specialization for unsigned char data arrays (used in GF2Mat) |
---|
188 | template<> |
---|
189 | void destroy_elements<unsigned char>(unsigned char* &ptr, int n); |
---|
190 | //! Specialization for binary data arrays |
---|
191 | template<> |
---|
192 | void destroy_elements<bin>(bin* &ptr, int n); |
---|
193 | //! Specialization for short integer data arrays |
---|
194 | template<> |
---|
195 | void destroy_elements<short int>(short int* &ptr, int n); |
---|
196 | //! Specialization for integer data arrays |
---|
197 | template<> |
---|
198 | void destroy_elements<int>(int* &ptr, int n); |
---|
199 | //! Specialisation for 16-byte aligned double data arrays |
---|
200 | template<> |
---|
201 | void destroy_elements<double>(double* &ptr, int n); |
---|
202 | //! Specialisation for 16-byte aligned complex double data arrays |
---|
203 | template<> |
---|
204 | void destroy_elements<std::complex<double> >(std::complex<double>* &ptr, |
---|
205 | int n); |
---|
206 | |
---|
207 | |
---|
208 | //! Create an n-length array of Array<T> to be used as Array elements |
---|
209 | template<class T> |
---|
210 | void create_elements(Array<T>* &ptr, int n, const Factory &f) |
---|
211 | { |
---|
212 | void *p = operator new(sizeof(Array<T>) * n); |
---|
213 | ptr = reinterpret_cast<Array<T>*>(p); |
---|
214 | for (int i = 0; i < n; ++i) { |
---|
215 | new (ptr + i) Array<T>(f); |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | //! Create an n-length array of Mat<T> to be used as Array elements |
---|
220 | template<class T> |
---|
221 | void create_elements(Mat<T>* &ptr, int n, const Factory &f) |
---|
222 | { |
---|
223 | void *p = operator new(sizeof(Mat<T>) * n); |
---|
224 | ptr = reinterpret_cast<Mat<T>*>(p); |
---|
225 | for (int i = 0; i < n; ++i) { |
---|
226 | new (ptr + i) Mat<T>(f); |
---|
227 | } |
---|
228 | } |
---|
229 | |
---|
230 | //! Create an n-length array of Vec<T> to be used as Array elements |
---|
231 | template<class T> |
---|
232 | void create_elements(Vec<T>* &ptr, int n, const Factory &f) |
---|
233 | { |
---|
234 | void *p = operator new(sizeof(Vec<T>) * n); |
---|
235 | ptr = reinterpret_cast<Vec<T>*>(p); |
---|
236 | for (int i = 0; i < n; ++i) { |
---|
237 | new (ptr + i) Vec<T>(f); |
---|
238 | } |
---|
239 | } |
---|
240 | |
---|
241 | } // namespace itpp |
---|
242 | |
---|
243 | #endif // #ifndef FACTORY_H |
---|