1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Elementary mathematical functions - header file |
---|
4 | * \author Tony Ottosson and Adam Piatyszek |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef ELEM_MATH_H |
---|
31 | #define ELEM_MATH_H |
---|
32 | |
---|
33 | #ifndef _MSC_VER |
---|
34 | # include <itpp/config.h> |
---|
35 | #else |
---|
36 | # include <itpp/config_msvc.h> |
---|
37 | #endif |
---|
38 | |
---|
39 | #include <itpp/base/help_functions.h> |
---|
40 | #include <itpp/base/converters.h> |
---|
41 | #include <cstdlib> |
---|
42 | |
---|
43 | |
---|
44 | //!\addtogroup miscfunc |
---|
45 | //!@{ |
---|
46 | |
---|
47 | #ifndef HAVE_TGAMMA |
---|
48 | //! True gamma function |
---|
49 | double tgamma(double x); |
---|
50 | #endif |
---|
51 | |
---|
52 | #if !defined(HAVE_LGAMMA) || (HAVE_DECL_SIGNGAM != 1) |
---|
53 | //! Lograrithm of an absolute gamma function |
---|
54 | double lgamma(double x); |
---|
55 | //! Global variable needed by \c lgamma function |
---|
56 | extern int signgam; |
---|
57 | #endif |
---|
58 | |
---|
59 | #ifndef HAVE_CBRT |
---|
60 | //! Cubic root |
---|
61 | double cbrt(double x); |
---|
62 | #endif |
---|
63 | |
---|
64 | //!@} |
---|
65 | |
---|
66 | namespace itpp { |
---|
67 | |
---|
68 | //!\addtogroup miscfunc |
---|
69 | //!@{ |
---|
70 | |
---|
71 | // -------------------- sqr function -------------------- |
---|
72 | |
---|
73 | //! Square of x |
---|
74 | inline double sqr(double x) { return (x * x); } |
---|
75 | //! Square of complex-valued x, ||x||^2 |
---|
76 | inline double sqr(const std::complex<double>& x) |
---|
77 | { |
---|
78 | return (x.real() * x.real() + x.imag() * x.imag()); |
---|
79 | } |
---|
80 | //! Square of elements |
---|
81 | inline vec sqr(const vec &x) { return apply_function<double>(sqr, x); } |
---|
82 | //! Square of elements |
---|
83 | inline mat sqr(const mat &x) { return apply_function<double>(sqr, x); } |
---|
84 | //! Square of elements |
---|
85 | vec sqr(const cvec &x); |
---|
86 | //! Square of elements |
---|
87 | mat sqr(const cmat &x); |
---|
88 | |
---|
89 | |
---|
90 | // -------------------- abs function -------------------- |
---|
91 | |
---|
92 | //! Absolute value |
---|
93 | inline vec abs(const vec &x) { return apply_function<double>(std::fabs, x); } |
---|
94 | //! Absolute value |
---|
95 | inline mat abs(const mat &x) { return apply_function<double>(std::fabs, x); } |
---|
96 | //! Absolute value |
---|
97 | inline ivec abs(const ivec &x) { return apply_function<int>(std::abs, x); } |
---|
98 | //! Absolute value |
---|
99 | inline imat abs(const imat &x) { return apply_function<int>(std::abs, x); } |
---|
100 | //! Absolute value |
---|
101 | vec abs(const cvec &x); |
---|
102 | //! Absolute value |
---|
103 | mat abs(const cmat &x); |
---|
104 | |
---|
105 | |
---|
106 | // -------------------- sign/sgn functions -------------------- |
---|
107 | |
---|
108 | //! Signum function |
---|
109 | inline double sign(double x) |
---|
110 | { |
---|
111 | return (x == 0.0 ? 0.0 : (x < 0.0 ? -1.0 : 1.0)); |
---|
112 | } |
---|
113 | //! Signum function |
---|
114 | inline vec sign(const vec &x) { return apply_function<double>(sign, x); } |
---|
115 | //! Signum function |
---|
116 | inline mat sign(const mat &x) { return apply_function<double>(sign, x); } |
---|
117 | |
---|
118 | //! Signum function |
---|
119 | inline double sgn(double x) { return sign(x); } |
---|
120 | //! Signum function |
---|
121 | inline vec sgn(const vec &x) { return apply_function<double>(sign, x); } |
---|
122 | //! Signum function |
---|
123 | inline mat sgn(const mat &x) { return apply_function<double>(sign, x); } |
---|
124 | |
---|
125 | //! Signum function |
---|
126 | inline int sign_i(int x) |
---|
127 | { |
---|
128 | return (x == 0 ? 0 : (x < 0 ? -1 : 1)); |
---|
129 | } |
---|
130 | //! Signum function |
---|
131 | inline ivec sign_i(const ivec &x) { return apply_function<int>(sign_i, x); } |
---|
132 | //! Signum function |
---|
133 | inline imat sign_i(const imat &x) { return apply_function<int>(sign_i, x); } |
---|
134 | |
---|
135 | //! Signum function |
---|
136 | inline int sgn_i(int x) { return sign_i(x); } |
---|
137 | //! Signum function |
---|
138 | inline ivec sgn_i(const ivec &x) { return apply_function<int>(sign_i, x); } |
---|
139 | //! Signum function |
---|
140 | inline imat sgn_i(const imat &x) { return apply_function<int>(sign_i, x); } |
---|
141 | |
---|
142 | //! Signum function |
---|
143 | inline int sign_i(double x) |
---|
144 | { |
---|
145 | return (x == 0.0 ? 0 : (x < 0.0 ? -1 : 1)); |
---|
146 | } |
---|
147 | |
---|
148 | // -------------------- sqrt function -------------------- |
---|
149 | |
---|
150 | //! Square root of the elements |
---|
151 | inline vec sqrt(const vec &x) { return apply_function<double>(std::sqrt, x); } |
---|
152 | //! Square root of the elements |
---|
153 | inline mat sqrt(const mat &x) { return apply_function<double>(std::sqrt, x); } |
---|
154 | |
---|
155 | |
---|
156 | // -------------------- gamma function -------------------- |
---|
157 | |
---|
158 | //! Deprecated gamma function - please use tgamma() instead |
---|
159 | inline double gamma(double x) { return tgamma(x); } |
---|
160 | //! Deprecated gamma function for vectors. Will be changed to tgamma(). |
---|
161 | inline vec gamma(const vec &x) { return apply_function<double>(tgamma, x); } |
---|
162 | //! Deprecated gamma function for matrices. Will be changed to tgamma(). |
---|
163 | inline mat gamma(const mat &x) { return apply_function<double>(tgamma, x); } |
---|
164 | |
---|
165 | |
---|
166 | // -------------------- rem function -------------------- |
---|
167 | |
---|
168 | //! The reminder of the division x/y |
---|
169 | inline double rem(double x, double y) { return fmod(x, y); } |
---|
170 | //! Elementwise reminder of the division x/y for vec and double |
---|
171 | inline vec rem(const vec &x, double y) |
---|
172 | { |
---|
173 | return apply_function<double>(rem, x, y); |
---|
174 | } |
---|
175 | //! Elementwise reminder of the division x/y for double and vec |
---|
176 | inline vec rem(double x, const vec &y) |
---|
177 | { |
---|
178 | return apply_function<double>(rem, x, y); |
---|
179 | } |
---|
180 | //! Elementwise reminder of the division x/y for mat and double |
---|
181 | inline mat rem(const mat &x, double y) |
---|
182 | { |
---|
183 | return apply_function<double>(rem, x, y); |
---|
184 | } |
---|
185 | //! Elementwise reminder of the division x/y for double and mat |
---|
186 | inline mat rem(double x, const mat &y) |
---|
187 | { |
---|
188 | return apply_function<double>(rem, x, y); |
---|
189 | } |
---|
190 | |
---|
191 | // -------------------- mod function -------------------- |
---|
192 | |
---|
193 | //! Calculates the modulus, i.e. the signed reminder after division |
---|
194 | inline int mod(int k, int n) |
---|
195 | { |
---|
196 | return (n == 0) ? k : (k - n * floor_i(static_cast<double>(k) / n )); |
---|
197 | } |
---|
198 | |
---|
199 | |
---|
200 | // -------------------- factorial coefficient function -------------------- |
---|
201 | |
---|
202 | //! Calculates factorial coefficient for index <= 170. |
---|
203 | double fact(int index); |
---|
204 | |
---|
205 | |
---|
206 | // -------------------- binomial coefficient function -------------------- |
---|
207 | |
---|
208 | //! Compute the binomial coefficient "n over k". |
---|
209 | double binom(int n, int k); |
---|
210 | |
---|
211 | //! Compute the binomial coefficient "n over k". |
---|
212 | int binom_i(int n, int k); |
---|
213 | |
---|
214 | //! Compute the base 10 logarithm of the binomial coefficient "n over k". |
---|
215 | double log_binom(int n, int k); |
---|
216 | |
---|
217 | |
---|
218 | // -------------------- greatest common divisor function -------------------- |
---|
219 | |
---|
220 | /*! |
---|
221 | * \brief Compute the greatest common divisor (GCD) \a g of the elements |
---|
222 | * \a a and \a b. |
---|
223 | * |
---|
224 | * \a a and \a b must be non-negative integers. \a gdc(0, 0) is 0 by |
---|
225 | * convention; all other GCDs are positive integers. |
---|
226 | */ |
---|
227 | int gcd(int a, int b); |
---|
228 | |
---|
229 | |
---|
230 | // -------------------- complex related functions -------------------- |
---|
231 | |
---|
232 | //! Real part of complex values |
---|
233 | vec real(const cvec &x); |
---|
234 | //! Real part of complex values |
---|
235 | mat real(const cmat &x); |
---|
236 | //! Imaginary part of complex values |
---|
237 | vec imag(const cvec &x); |
---|
238 | //! Imaginary part of complex values |
---|
239 | mat imag(const cmat &x); |
---|
240 | |
---|
241 | //! Argument (angle) |
---|
242 | vec arg(const cvec &x); |
---|
243 | //! Argument (angle) |
---|
244 | mat arg(const cmat &x); |
---|
245 | //! Angle |
---|
246 | inline vec angle(const cvec &x) { return arg(x); } |
---|
247 | //! Angle |
---|
248 | inline mat angle(const cmat &x) { return arg(x); } |
---|
249 | |
---|
250 | // Added due to a failure in MSVC++ .NET 2005, which crashes on this |
---|
251 | // code. |
---|
252 | #ifndef _MSC_VER |
---|
253 | //! Conjugate of complex value |
---|
254 | inline cvec conj(const cvec &x) |
---|
255 | { |
---|
256 | return apply_function<std::complex<double> >(std::conj, x); |
---|
257 | } |
---|
258 | //! Conjugate of complex value |
---|
259 | inline cmat conj(const cmat &x) |
---|
260 | { |
---|
261 | return apply_function<std::complex<double> >(std::conj, x); |
---|
262 | } |
---|
263 | #else |
---|
264 | //! Conjugate of complex value |
---|
265 | cvec conj(const cvec &x); |
---|
266 | |
---|
267 | //! Conjugate of complex value |
---|
268 | cmat conj(const cmat &x); |
---|
269 | #endif |
---|
270 | |
---|
271 | //!@} |
---|
272 | |
---|
273 | } // namespace itpp |
---|
274 | |
---|
275 | #endif // #ifndef ELEM_MATH_H |
---|
276 | |
---|
277 | |
---|
278 | |
---|