1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Logarithmic and exponenential functions - header file |
---|
4 | * \author Tony Ottosson, Adam Piatyszek and Conrad Sanderson |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef LOG_EXP_H |
---|
31 | #define LOG_EXP_H |
---|
32 | |
---|
33 | #ifndef _MSC_VER |
---|
34 | # include <itpp/config.h> |
---|
35 | #else |
---|
36 | # include <itpp/config_msvc.h> |
---|
37 | #endif |
---|
38 | |
---|
39 | #include <itpp/base/help_functions.h> |
---|
40 | #include <limits> |
---|
41 | |
---|
42 | |
---|
43 | /*! |
---|
44 | * \addtogroup logexpfunc |
---|
45 | * @{ |
---|
46 | */ |
---|
47 | |
---|
48 | #ifndef HAVE_LOG1P |
---|
49 | //! Lograrithm of an argument \c x plus one |
---|
50 | inline double log1p(double x) { return std::log(1.0 + x); } |
---|
51 | #endif |
---|
52 | |
---|
53 | #ifndef HAVE_LOG2 |
---|
54 | #undef log2 // This is required at least for Cygwin |
---|
55 | //! Base-2 logarithm |
---|
56 | inline double log2(double x) |
---|
57 | { |
---|
58 | return (std::log(x) * 1.442695040888963387004650940070860087871551513671875); |
---|
59 | } |
---|
60 | #endif |
---|
61 | |
---|
62 | /*! |
---|
63 | * @} |
---|
64 | */ |
---|
65 | |
---|
66 | |
---|
67 | namespace itpp { |
---|
68 | |
---|
69 | //!\addtogroup logexpfunc |
---|
70 | //!@{ |
---|
71 | |
---|
72 | // ---------------------------------------------------------------------- |
---|
73 | // scalar functions |
---|
74 | // ---------------------------------------------------------------------- |
---|
75 | |
---|
76 | //! Base-b logarithm |
---|
77 | inline double logb(double b, double x) |
---|
78 | { |
---|
79 | return (std::log(x) / std::log(b)); |
---|
80 | } |
---|
81 | |
---|
82 | //! Calculate two to the power of x (2^x); x is integer |
---|
83 | inline int pow2i(int x) { return ((x < 0) ? 0 : (1 << x)); } |
---|
84 | //! Calculate two to the power of x (2^x) |
---|
85 | inline double pow2(double x) { return pow(2.0, x); } |
---|
86 | |
---|
87 | //! Calculate ten to the power of x (10^x) |
---|
88 | inline double pow10(double x) { return pow(10.0, x); } |
---|
89 | |
---|
90 | //! Decibel of x (10*log10(x)) |
---|
91 | inline double dB(double x) { return 10.0 * log10(x); } |
---|
92 | //! Inverse of decibel of x |
---|
93 | inline double inv_dB(double x) { return pow(10.0, 0.1 * x); } |
---|
94 | |
---|
95 | //! Calculate the number of bits needed to represent an inteager \c n |
---|
96 | inline int int2bits(int n) |
---|
97 | { |
---|
98 | it_assert(n >= 0, "int2bits(): Improper argument value"); |
---|
99 | |
---|
100 | if (n == 0) |
---|
101 | return 1; |
---|
102 | |
---|
103 | int b = 0; |
---|
104 | while (n) { |
---|
105 | n >>= 1; |
---|
106 | ++b; |
---|
107 | } |
---|
108 | return b; |
---|
109 | } |
---|
110 | |
---|
111 | //! Calculate the number of bits needed to represent \c n different values (levels). |
---|
112 | inline int levels2bits(int n) |
---|
113 | { |
---|
114 | it_assert(n > 0,"levels2bits(): Improper argument value"); |
---|
115 | return int2bits(--n); |
---|
116 | } |
---|
117 | |
---|
118 | //! Deprecated function. Please use int2bits() or levels2bits() instead. |
---|
119 | inline int needed_bits(int n) |
---|
120 | { |
---|
121 | it_warning("needed_bits(): This function is depreceted. Depending on your needs, please use int2bits() or levels2bits() instead."); |
---|
122 | return int2bits(n); |
---|
123 | } |
---|
124 | |
---|
125 | //! Constant definition to speed up trunc_log() and trunc_exp() |
---|
126 | const double log_double_max = std::log(std::numeric_limits<double>::max()); |
---|
127 | //! Constant definition to speed up trunc_log(), trunc_exp() and log_add() |
---|
128 | const double log_double_min = std::log(std::numeric_limits<double>::min()); |
---|
129 | |
---|
130 | /*! |
---|
131 | \brief Truncated natural logarithm function |
---|
132 | |
---|
133 | This truncated function provides a solution in the cases when the |
---|
134 | logarithm argument is less or equal to zero or infinity. The function |
---|
135 | checks for such extreme values and use some kind of truncation |
---|
136 | (saturation) before calculating the logarithm. |
---|
137 | |
---|
138 | The truncated logarithm function can be used for calculation of |
---|
139 | log-likelihood in soft demodulators, when numerical instability problem |
---|
140 | might occur. |
---|
141 | */ |
---|
142 | inline double trunc_log(double x) |
---|
143 | { |
---|
144 | if (std::numeric_limits<double>::is_iec559) { |
---|
145 | if (x == std::numeric_limits<double>::infinity()) |
---|
146 | return log_double_max; |
---|
147 | if (x <= 0) |
---|
148 | return log_double_min; |
---|
149 | } |
---|
150 | return std::log(x); |
---|
151 | } |
---|
152 | |
---|
153 | /*! |
---|
154 | \brief Truncated exponential function |
---|
155 | |
---|
156 | This truncated function provides a solution in the case when the |
---|
157 | exponent function results in infinity. The function checks for an |
---|
158 | extreme value and use truncation (saturation) before calculating |
---|
159 | the result. |
---|
160 | |
---|
161 | The truncated exponential function can be used when numerical |
---|
162 | instability problem occurs for a standard exp function. |
---|
163 | */ |
---|
164 | inline double trunc_exp(double x) |
---|
165 | { |
---|
166 | if (std::numeric_limits<double>::is_iec559 |
---|
167 | && (x >= log_double_max)) |
---|
168 | return std::numeric_limits<double>::max(); |
---|
169 | return std::exp(x); |
---|
170 | } |
---|
171 | |
---|
172 | |
---|
173 | //! Safe substitute for <tt>log(exp(log_a) + exp(log_b))</tt> |
---|
174 | inline double log_add(double log_a, double log_b) |
---|
175 | { |
---|
176 | if (log_a < log_b) { |
---|
177 | double tmp = log_a; |
---|
178 | log_a = log_b; |
---|
179 | log_b = tmp; |
---|
180 | } |
---|
181 | double negdelta = log_b - log_a; |
---|
182 | if (negdelta < log_double_min) |
---|
183 | return log_a; |
---|
184 | else |
---|
185 | return (log_a + log1p(std::exp(negdelta))); |
---|
186 | } |
---|
187 | |
---|
188 | |
---|
189 | // ---------------------------------------------------------------------- |
---|
190 | // functions on vectors and matrices |
---|
191 | // ---------------------------------------------------------------------- |
---|
192 | |
---|
193 | //! Exp of the elements of a vector \c x |
---|
194 | inline vec exp(const vec &x) |
---|
195 | { |
---|
196 | return apply_function<double>(std::exp, x); |
---|
197 | } |
---|
198 | //! Exp of the elements of a complex vector \c x |
---|
199 | inline cvec exp(const cvec &x) |
---|
200 | { |
---|
201 | return apply_function<std::complex<double> >(std::exp, x); |
---|
202 | } |
---|
203 | //! Exp of the elements of a matrix \c m |
---|
204 | inline mat exp(const mat &m) |
---|
205 | { |
---|
206 | return apply_function<double>(std::exp, m); |
---|
207 | } |
---|
208 | //! Exp of the elements of a complex matrix \c m |
---|
209 | inline cmat exp(const cmat &m) |
---|
210 | { |
---|
211 | return apply_function<std::complex<double> >(std::exp, m); |
---|
212 | } |
---|
213 | |
---|
214 | //! Calculates x to the power of y (x^y) |
---|
215 | inline vec pow(const double x, const vec &y) |
---|
216 | { |
---|
217 | return apply_function<double>(std::pow, x, y); |
---|
218 | } |
---|
219 | //! Calculates x to the power of y (x^y) |
---|
220 | inline mat pow(const double x, const mat &y) |
---|
221 | { |
---|
222 | return apply_function<double>(std::pow, x, y); |
---|
223 | } |
---|
224 | //! Calculates x to the power of y (x^y) |
---|
225 | inline vec pow(const vec &x, const double y) |
---|
226 | { |
---|
227 | return apply_function<double>(std::pow, x, y); |
---|
228 | } |
---|
229 | //! Calculates x to the power of y (x^y) |
---|
230 | inline mat pow(const mat &x, const double y) |
---|
231 | { |
---|
232 | return apply_function<double>(std::pow, x, y); |
---|
233 | } |
---|
234 | |
---|
235 | //! Calculates two to the power of x (2^x) |
---|
236 | inline vec pow2(const vec &x) |
---|
237 | { |
---|
238 | return apply_function<double>(pow2, x); |
---|
239 | } |
---|
240 | //! Calculates two to the power of x (2^x) |
---|
241 | inline mat pow2(const mat &x) |
---|
242 | { |
---|
243 | return apply_function<double>(pow2, x); |
---|
244 | } |
---|
245 | |
---|
246 | //! Calculates ten to the power of x (10^x) |
---|
247 | inline vec pow10(const vec &x) |
---|
248 | { |
---|
249 | return apply_function<double>(pow10, x); |
---|
250 | } |
---|
251 | //! Calculates ten to the power of x (10^x) |
---|
252 | inline mat pow10(const mat &x) |
---|
253 | { |
---|
254 | return apply_function<double>(pow10, x); |
---|
255 | } |
---|
256 | |
---|
257 | //! The natural logarithm of the elements |
---|
258 | inline vec log(const vec &x) |
---|
259 | { |
---|
260 | return apply_function<double>(std::log, x); |
---|
261 | } |
---|
262 | //! The natural logarithm of the elements |
---|
263 | inline mat log(const mat &x) |
---|
264 | { |
---|
265 | return apply_function<double>(std::log, x); |
---|
266 | } |
---|
267 | //! The natural logarithm of the elements |
---|
268 | inline cvec log(const cvec &x) |
---|
269 | { |
---|
270 | return apply_function<std::complex<double> >(std::log, x); |
---|
271 | } |
---|
272 | //! The natural logarithm of the elements |
---|
273 | inline cmat log(const cmat &x) |
---|
274 | { |
---|
275 | return apply_function<std::complex<double> >(std::log, x); |
---|
276 | } |
---|
277 | |
---|
278 | //! log-2 of the elements |
---|
279 | inline vec log2(const vec &x) |
---|
280 | { |
---|
281 | return apply_function<double>(::log2, x); |
---|
282 | } |
---|
283 | //! log-2 of the elements |
---|
284 | inline mat log2(const mat &x) |
---|
285 | { |
---|
286 | return apply_function<double>(::log2, x); |
---|
287 | } |
---|
288 | |
---|
289 | //! log-10 of the elements |
---|
290 | inline vec log10(const vec &x) |
---|
291 | { |
---|
292 | return apply_function<double>(std::log10, x); |
---|
293 | } |
---|
294 | //! log-10 of the elements |
---|
295 | inline mat log10(const mat &x) |
---|
296 | { |
---|
297 | return apply_function<double>(std::log10, x); |
---|
298 | } |
---|
299 | |
---|
300 | //! log-b of \c x |
---|
301 | inline vec logb(double b, const vec &x) |
---|
302 | { |
---|
303 | return apply_function<double>(itpp::logb, b, x); |
---|
304 | } |
---|
305 | //! log-b of \c x |
---|
306 | inline mat logb(double b, const mat &x) |
---|
307 | { |
---|
308 | return apply_function<double>(itpp::logb, b, x); |
---|
309 | } |
---|
310 | |
---|
311 | //! Calculates 10*log10(x) |
---|
312 | inline vec dB(const vec &x) |
---|
313 | { |
---|
314 | return apply_function<double>(dB, x); |
---|
315 | } |
---|
316 | //! Calculates 10*log10(x) |
---|
317 | inline mat dB(const mat &x) |
---|
318 | { |
---|
319 | return apply_function<double>(dB, x); |
---|
320 | } |
---|
321 | |
---|
322 | //! Calulates the inverse of dB, 10^(x/10) |
---|
323 | inline vec inv_dB(const vec &x) |
---|
324 | { |
---|
325 | return apply_function<double>(inv_dB, x); |
---|
326 | } |
---|
327 | //! Calculates the inverse of dB, 10^(x/10) |
---|
328 | inline mat inv_dB(const mat &x) |
---|
329 | { |
---|
330 | return apply_function<double>(inv_dB, x); |
---|
331 | } |
---|
332 | |
---|
333 | //! Deprecated function. Please use int2bits() or levels2bits() instead. |
---|
334 | inline ivec needed_bits(const ivec& v) |
---|
335 | { |
---|
336 | it_warning("needed_bits(): This function is depreceted. Depending on your needs, please use int2bits() or levels2bits() instead."); |
---|
337 | return apply_function<int>(int2bits, v); |
---|
338 | } |
---|
339 | |
---|
340 | //! Calculate the number of bits needed to represent each inteager in a vector |
---|
341 | inline ivec int2bits(const ivec& v) |
---|
342 | { |
---|
343 | return apply_function<int>(int2bits, v); |
---|
344 | } |
---|
345 | |
---|
346 | //! Calculate the number of bits needed to represent a numer of levels saved in a vector |
---|
347 | inline ivec levels2bits(const ivec& v) |
---|
348 | { |
---|
349 | return apply_function<int>(levels2bits, v); |
---|
350 | } |
---|
351 | |
---|
352 | //!@} |
---|
353 | |
---|
354 | } // namespace itpp |
---|
355 | |
---|
356 | #endif // #ifndef LOG_EXP_H |
---|
357 | |
---|
358 | |
---|
359 | |
---|