1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definition of classes for random number generators |
---|
4 | * \author Tony Ottosson and Adam Piatyszek |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef RANDOM_H |
---|
31 | #define RANDOM_H |
---|
32 | |
---|
33 | #include <itpp/base/operators.h> |
---|
34 | #include <ctime> |
---|
35 | |
---|
36 | |
---|
37 | namespace itpp { |
---|
38 | |
---|
39 | //! \addtogroup randgen |
---|
40 | |
---|
41 | /*! |
---|
42 | * \brief Base class for random (stochastic) sources. |
---|
43 | * \ingroup randgen |
---|
44 | * |
---|
45 | * The Random_Generator class is based on the MersenneTwister MTRand |
---|
46 | * class code in version 1.0 (15 May 2003) by Richard J. Wagner. See |
---|
47 | * http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html |
---|
48 | * for details. |
---|
49 | * |
---|
50 | * Here are the original release notes copied from the |
---|
51 | * \c MersenneTwister.h file: |
---|
52 | * |
---|
53 | * \verbatim |
---|
54 | * Mersenne Twister random number generator -- a C++ class MTRand Based on |
---|
55 | * code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus Richard J. |
---|
56 | * Wagner v1.0 15 May 2003 rjwagner@writeme.com |
---|
57 | * |
---|
58 | * The Mersenne Twister is an algorithm for generating random numbers. It |
---|
59 | * was designed with consideration of the flaws in various other generators. |
---|
60 | * The period, 2^19937-1, and the order of equidistribution, 623 dimensions, |
---|
61 | * are far greater. The generator is also fast; it avoids multiplication and |
---|
62 | * division, and it benefits from caches and pipelines. For more information |
---|
63 | * see the inventors' web page at |
---|
64 | * http://www.math.keio.ac.jp/~matumoto/emt.html |
---|
65 | |
---|
66 | * Reference: |
---|
67 | * M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally |
---|
68 | * Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions |
---|
69 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp. |
---|
70 | * 3-30. |
---|
71 | * |
---|
72 | * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, |
---|
73 | * Copyright (C) 2000 - 2003, Richard J. Wagner |
---|
74 | * All rights reserved. |
---|
75 | * |
---|
76 | * Redistribution and use in source and binary forms, with or without |
---|
77 | * modification, are permitted provided that the following conditions |
---|
78 | * are met: |
---|
79 | * |
---|
80 | * 1. Redistributions of source code must retain the above copyright |
---|
81 | * notice, this list of conditions and the following disclaimer. |
---|
82 | * |
---|
83 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
84 | * notice, this list of conditions and the following disclaimer in the |
---|
85 | * documentation and/or other materials provided with the distribution. |
---|
86 | * |
---|
87 | * 3. The names of its contributors may not be used to endorse or promote |
---|
88 | * products derived from this software without specific prior written |
---|
89 | * permission. |
---|
90 | * |
---|
91 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
---|
92 | * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
---|
93 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
---|
94 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
---|
95 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
---|
96 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
---|
97 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
---|
98 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
---|
99 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
---|
100 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
---|
101 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
102 | * |
---|
103 | * The original code included the following notice: |
---|
104 | * |
---|
105 | * When you use this, send an email to: matumoto@math.keio.ac.jp with an |
---|
106 | * appropriate reference to your work. |
---|
107 | * |
---|
108 | * It would be nice to CC: rjwagner@writeme.com and |
---|
109 | * Cokus@math.washington.edu when you write. |
---|
110 | * \endverbatim |
---|
111 | */ |
---|
112 | class Random_Generator { |
---|
113 | public: |
---|
114 | //! Construct a new Random_Generator. |
---|
115 | Random_Generator() { if (!initialized) reset(4357U); } |
---|
116 | //! Construct Random_Generator object using \c seed |
---|
117 | Random_Generator(unsigned int seed) { reset(seed); } |
---|
118 | //! Set the seed to a semi-random value (based on hashed time and clock). |
---|
119 | void randomize() { reset(hash(time(0), clock())); } |
---|
120 | //! Reset the source. The same sequance will be generated as the last time. |
---|
121 | void reset() { initialize(last_seed); reload(); initialized = true; } |
---|
122 | //! Reset the source after setting the seed to seed. |
---|
123 | void reset(unsigned int seed) { last_seed = seed; reset(); } |
---|
124 | |
---|
125 | //! Return a uniformly distributed [0,2^32-1] integer. |
---|
126 | unsigned int random_int() |
---|
127 | { |
---|
128 | if( left == 0 ) reload(); |
---|
129 | --left; |
---|
130 | |
---|
131 | register unsigned int s1; |
---|
132 | s1 = *pNext++; |
---|
133 | s1 ^= (s1 >> 11); |
---|
134 | s1 ^= (s1 << 7) & 0x9d2c5680U; |
---|
135 | s1 ^= (s1 << 15) & 0xefc60000U; |
---|
136 | return ( s1 ^ (s1 >> 18) ); |
---|
137 | } |
---|
138 | |
---|
139 | //! Return a uniformly distributed (0,1) value. |
---|
140 | double random_01() { return (random_int() + 0.5) * (1.0/4294967296.0); } |
---|
141 | //! Return a uniformly distributed [0,1) value. |
---|
142 | double random_01_lclosed() { return random_int() * (1.0/4294967296.0); } |
---|
143 | //! Return a uniformly distributed [0,1] value. |
---|
144 | double random_01_closed() { return random_int() * (1.0/4294967295.0); } |
---|
145 | //! Return a uniformly distributed [0,1) value in 53-bit resolution. |
---|
146 | double random53_01_lclosed() |
---|
147 | { |
---|
148 | return ((random_int() >> 5) * 67108864.0 + (random_int() >> 6)) |
---|
149 | * (1.0/9007199254740992.0); // by Isaku Wada |
---|
150 | } |
---|
151 | |
---|
152 | //! Save current full state of generator in memory |
---|
153 | void get_state(ivec &out_state); |
---|
154 | //! Resume the state saved in memory. Clears memory. |
---|
155 | void set_state(ivec &new_state); |
---|
156 | |
---|
157 | private: |
---|
158 | //! initialization flag |
---|
159 | static bool initialized; |
---|
160 | //! seed used for initialisation |
---|
161 | unsigned int last_seed; |
---|
162 | //! internal state |
---|
163 | static unsigned int state[624]; |
---|
164 | //! next value to get from state |
---|
165 | static unsigned int *pNext; |
---|
166 | //! number of values left before reload needed |
---|
167 | static int left; |
---|
168 | |
---|
169 | /*! |
---|
170 | * \brief Initialize generator state with seed. |
---|
171 | * See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier. |
---|
172 | * \note In previous versions, most significant bits (MSBs) of the seed |
---|
173 | * affect only MSBs of the state array. Modified 9 Jan 2002 by Makoto |
---|
174 | * Matsumoto. |
---|
175 | */ |
---|
176 | void initialize( unsigned int seed ) |
---|
177 | { |
---|
178 | register unsigned int *s = state; |
---|
179 | register unsigned int *r = state; |
---|
180 | register int i = 1; |
---|
181 | *s++ = seed & 0xffffffffU; |
---|
182 | for( ; i < 624; ++i ) |
---|
183 | { |
---|
184 | *s++ = ( 1812433253U * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffU; |
---|
185 | r++; |
---|
186 | } |
---|
187 | } |
---|
188 | |
---|
189 | /*! |
---|
190 | * \brief Generate N new values in state. |
---|
191 | * Made clearer and faster by Matthew Bellew (matthew.bellew@home.com) |
---|
192 | */ |
---|
193 | void reload() |
---|
194 | { |
---|
195 | register unsigned int *p = state; |
---|
196 | register int i; |
---|
197 | for( i = 624 - 397; i--; ++p ) |
---|
198 | *p = twist( p[397], p[0], p[1] ); |
---|
199 | for( i = 397; --i; ++p ) |
---|
200 | *p = twist( p[397-624], p[0], p[1] ); |
---|
201 | *p = twist( p[397-624], p[0], state[0] ); |
---|
202 | |
---|
203 | left = 624, pNext = state; |
---|
204 | } |
---|
205 | //! |
---|
206 | unsigned int hiBit( const unsigned int& u ) const { return u & 0x80000000U; } |
---|
207 | //! |
---|
208 | unsigned int loBit( const unsigned int& u ) const { return u & 0x00000001U; } |
---|
209 | //! |
---|
210 | unsigned int loBits( const unsigned int& u ) const { return u & 0x7fffffffU; } |
---|
211 | //! |
---|
212 | unsigned int mixBits( const unsigned int& u, const unsigned int& v ) const |
---|
213 | { return hiBit(u) | loBits(v); } |
---|
214 | |
---|
215 | /* |
---|
216 | * ---------------------------------------------------------------------- |
---|
217 | * --- ediap - 2007/01/17 --- |
---|
218 | * ---------------------------------------------------------------------- |
---|
219 | * Wagners's implementation of the twist() function was as follows: |
---|
220 | * { return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfU); } |
---|
221 | * However, this code caused a warning/error under MSVC++, because |
---|
222 | * unsigned value loBit(s1) is being negated with `-' (c.f. bug report |
---|
223 | * [1635988]). I changed this to the same implementation as is used in |
---|
224 | * original C sources of Mersenne Twister RNG: |
---|
225 | * #define MATRIX_A 0x9908b0dfUL |
---|
226 | * #define UMASK 0x80000000UL |
---|
227 | * #define LMASK 0x7fffffffUL |
---|
228 | * #define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) ) |
---|
229 | * #define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL)) |
---|
230 | * ---------------------------------------------------------------------- |
---|
231 | */ |
---|
232 | //! |
---|
233 | unsigned int twist( const unsigned int& m, const unsigned int& s0, |
---|
234 | const unsigned int& s1 ) const |
---|
235 | { return m ^ (mixBits(s0,s1)>>1) ^ (loBit(s1) ? 0x9908b0dfU : 0U); } |
---|
236 | //! |
---|
237 | unsigned int hash( time_t t, clock_t c ); |
---|
238 | }; |
---|
239 | |
---|
240 | |
---|
241 | //! \addtogroup randgen |
---|
242 | //!@{ |
---|
243 | |
---|
244 | //! Set the seed of the Global Random Number Generator |
---|
245 | void RNG_reset(unsigned int seed); |
---|
246 | //! Set the seed of the Global Random Number Generator to the same as last reset/init |
---|
247 | void RNG_reset(); |
---|
248 | //! Set a random seed for the Global Random Number Generator. |
---|
249 | void RNG_randomize(); |
---|
250 | //! Save current full state of generator in memory |
---|
251 | void RNG_get_state(ivec &state); |
---|
252 | //! Resume the state saved in memory |
---|
253 | void RNG_set_state(ivec &state); |
---|
254 | //!@} |
---|
255 | |
---|
256 | /*! |
---|
257 | \brief Bernoulli distribution |
---|
258 | \ingroup randgen |
---|
259 | */ |
---|
260 | class Bernoulli_RNG { |
---|
261 | public: |
---|
262 | //! Binary source with probability prob for a 1 |
---|
263 | Bernoulli_RNG(double prob) { setup(prob); } |
---|
264 | //! Binary source with probability prob for a 1 |
---|
265 | Bernoulli_RNG() { p=0.5; } |
---|
266 | //! set the probability |
---|
267 | void setup(double prob) |
---|
268 | { |
---|
269 | it_assert(prob>=0.0 && prob<=1.0, "The bernoulli source probability must be between 0 and 1"); |
---|
270 | p = prob; |
---|
271 | } |
---|
272 | //! return the probability |
---|
273 | double get_setup() const { return p; } |
---|
274 | //! Get one sample. |
---|
275 | bin operator()() { return sample(); } |
---|
276 | //! Get a sample vector. |
---|
277 | bvec operator()(int n) { bvec temp(n); sample_vector(n, temp); return temp; } |
---|
278 | //! Get a sample matrix. |
---|
279 | bmat operator()(int h, int w) { bmat temp(h, w); sample_matrix(h, w, temp); return temp; } |
---|
280 | //! Get a sample |
---|
281 | bin sample() { return bin( RNG.random_01() < p ? 1 : 0 ); } |
---|
282 | //! Get a sample vector. |
---|
283 | void sample_vector(int size, bvec &out) |
---|
284 | { |
---|
285 | out.set_size(size, false); |
---|
286 | for (int i=0; i<size; i++) out(i) = sample(); |
---|
287 | } |
---|
288 | //! Get a sample matrix. |
---|
289 | void sample_matrix(int rows, int cols, bmat &out) |
---|
290 | { |
---|
291 | out.set_size(rows, cols, false); |
---|
292 | for (int i=0; i<rows*cols; i++) out(i) = sample(); |
---|
293 | } |
---|
294 | protected: |
---|
295 | private: |
---|
296 | //! |
---|
297 | double p; |
---|
298 | //! |
---|
299 | Random_Generator RNG; |
---|
300 | }; |
---|
301 | |
---|
302 | /*! |
---|
303 | \brief Integer uniform distribution |
---|
304 | \ingroup randgen |
---|
305 | |
---|
306 | Example: Generation of random uniformly distributed integers in the interval [0,10]. |
---|
307 | \code |
---|
308 | #include "itpp/sigproc.h" |
---|
309 | |
---|
310 | int main() { |
---|
311 | |
---|
312 | I_Uniform_RNG gen(0, 10); |
---|
313 | |
---|
314 | cout << gen() << endl; // prints a random integer |
---|
315 | cout << gen(10) << endl; // prints 10 random integers |
---|
316 | } |
---|
317 | \endcode |
---|
318 | */ |
---|
319 | class I_Uniform_RNG { |
---|
320 | public: |
---|
321 | //! constructor. Sets min and max values. |
---|
322 | I_Uniform_RNG(int min=0, int max=1); |
---|
323 | //! set min and max values |
---|
324 | void setup(int min, int max); |
---|
325 | //! get the parameters |
---|
326 | void get_setup(int &min, int &max) const; |
---|
327 | //! Get one sample. |
---|
328 | int operator()() { return sample(); } |
---|
329 | //! Get a sample vector. |
---|
330 | ivec operator()(int n); |
---|
331 | //! Get a sample matrix. |
---|
332 | imat operator()(int h, int w); |
---|
333 | //! Return a single value from this random generator |
---|
334 | int sample() { return ( floor_i(RNG.random_01() * (hi - lo + 1)) + lo ); } |
---|
335 | protected: |
---|
336 | private: |
---|
337 | //! |
---|
338 | int lo; |
---|
339 | //! |
---|
340 | int hi; |
---|
341 | //! |
---|
342 | Random_Generator RNG; |
---|
343 | }; |
---|
344 | |
---|
345 | /*! |
---|
346 | \brief Uniform distribution |
---|
347 | \ingroup randgen |
---|
348 | */ |
---|
349 | class Uniform_RNG { |
---|
350 | public: |
---|
351 | //! Constructor. Set min, max and seed. |
---|
352 | Uniform_RNG(double min=0, double max=1.0); |
---|
353 | //! set min and max |
---|
354 | void setup(double min, double max); |
---|
355 | //! get parameters |
---|
356 | void get_setup(double &min, double &max) const; |
---|
357 | //! Get one sample. |
---|
358 | double operator()() { return (sample() * (hi_bound - lo_bound) + lo_bound); } |
---|
359 | //! Get a sample vector. |
---|
360 | vec operator()(int n) |
---|
361 | { |
---|
362 | vec temp(n); |
---|
363 | sample_vector(n, temp); |
---|
364 | temp *= hi_bound - lo_bound; |
---|
365 | temp += lo_bound; |
---|
366 | return temp; |
---|
367 | } |
---|
368 | //! Get a sample matrix. |
---|
369 | mat operator()(int h, int w) |
---|
370 | { |
---|
371 | mat temp(h, w); |
---|
372 | sample_matrix(h, w, temp); |
---|
373 | temp *= hi_bound - lo_bound; |
---|
374 | temp += lo_bound; |
---|
375 | return temp; |
---|
376 | } |
---|
377 | //! Get a Uniformly distributed (0,1) sample |
---|
378 | double sample() { return RNG.random_01(); } |
---|
379 | //! Get a Uniformly distributed (0,1) vector |
---|
380 | void sample_vector(int size, vec &out) |
---|
381 | { |
---|
382 | out.set_size(size, false); |
---|
383 | for (int i=0; i<size; i++) out(i) = sample(); |
---|
384 | } |
---|
385 | //! Get a Uniformly distributed (0,1) matrix |
---|
386 | void sample_matrix(int rows, int cols, mat &out) |
---|
387 | { |
---|
388 | out.set_size(rows, cols, false); |
---|
389 | for (int i=0; i<rows*cols; i++) out(i) = sample(); |
---|
390 | } |
---|
391 | protected: |
---|
392 | private: |
---|
393 | //! |
---|
394 | double lo_bound, hi_bound; |
---|
395 | //! |
---|
396 | Random_Generator RNG; |
---|
397 | }; |
---|
398 | |
---|
399 | /*! |
---|
400 | \brief Exponential distribution |
---|
401 | \ingroup randgen |
---|
402 | */ |
---|
403 | class Exponential_RNG { |
---|
404 | public: |
---|
405 | //! constructor. Set lambda. |
---|
406 | Exponential_RNG(double lambda=1.0); |
---|
407 | //! Set lambda |
---|
408 | void setup(double lambda) { l=lambda; } |
---|
409 | //! get lambda |
---|
410 | double get_setup() const; |
---|
411 | //! Get one sample. |
---|
412 | double operator()() { return sample(); } |
---|
413 | //! Get a sample vector. |
---|
414 | vec operator()(int n); |
---|
415 | //! Get a sample matrix. |
---|
416 | mat operator()(int h, int w); |
---|
417 | protected: |
---|
418 | private: |
---|
419 | //! |
---|
420 | double sample() { return ( -std::log(RNG.random_01()) / l ); } |
---|
421 | //! |
---|
422 | double l; |
---|
423 | //! |
---|
424 | Random_Generator RNG; |
---|
425 | }; |
---|
426 | |
---|
427 | /*! |
---|
428 | * \brief Normal distribution |
---|
429 | * \ingroup randgen |
---|
430 | * |
---|
431 | * Normal (Gaussian) random variables, using a simplified Ziggurat method. |
---|
432 | * |
---|
433 | * For details see the following arcticle: George Marsaglia, Wai Wan |
---|
434 | * Tsang, "The Ziggurat Method for Generating Random Variables", Journal |
---|
435 | * of Statistical Software, vol. 5 (2000), no. 8 |
---|
436 | * |
---|
437 | * This implementation is based on the generator written by Jochen Voss |
---|
438 | * found at http://seehuhn.de/comp/ziggurat/, which is also included in |
---|
439 | * the GSL library (randlist/gauss.c). |
---|
440 | */ |
---|
441 | class Normal_RNG { |
---|
442 | public: |
---|
443 | //! Constructor. Set mean and variance. |
---|
444 | Normal_RNG(double meanval, double variance): |
---|
445 | mean(meanval), sigma(std::sqrt(variance)) {} |
---|
446 | //! Constructor. Set mean and variance. |
---|
447 | Normal_RNG(): mean(0.0), sigma(1.0) {} |
---|
448 | //! Set mean, and variance |
---|
449 | void setup(double meanval, double variance) |
---|
450 | { mean = meanval; sigma = std::sqrt(variance); } |
---|
451 | //! Get mean and variance |
---|
452 | void get_setup(double &meanval, double &variance) const; |
---|
453 | //! Get one sample. |
---|
454 | double operator()() { return (sigma*sample()+mean); } |
---|
455 | //! Get a sample vector. |
---|
456 | vec operator()(int n) |
---|
457 | { |
---|
458 | vec temp(n); |
---|
459 | sample_vector(n, temp); |
---|
460 | temp *= sigma; |
---|
461 | temp += mean; |
---|
462 | return temp; |
---|
463 | } |
---|
464 | //! Get a sample matrix. |
---|
465 | mat operator()(int h, int w) |
---|
466 | { |
---|
467 | mat temp(h, w); |
---|
468 | sample_matrix(h, w, temp); |
---|
469 | temp *= sigma; |
---|
470 | temp += mean; |
---|
471 | return temp; |
---|
472 | } |
---|
473 | //! Get a Normal distributed (0,1) sample |
---|
474 | double sample() |
---|
475 | { |
---|
476 | unsigned int u, sign, i, j; |
---|
477 | double x, y; |
---|
478 | |
---|
479 | while(true) { |
---|
480 | u = RNG.random_int(); |
---|
481 | sign = u & 0x80; // 1 bit for the sign |
---|
482 | i = u & 0x7f; // 7 bits to choose the step |
---|
483 | j = u >> 8; // 24 bits for the x-value |
---|
484 | |
---|
485 | x = j * wtab[i]; |
---|
486 | |
---|
487 | if (j < ktab[i]) |
---|
488 | break; |
---|
489 | |
---|
490 | if (i < 127) { |
---|
491 | y = ytab[i+1] + (ytab[i] - ytab[i+1]) * RNG.random_01(); |
---|
492 | } |
---|
493 | else { |
---|
494 | x = PARAM_R - std::log(1.0 - RNG.random_01()) / PARAM_R; |
---|
495 | y = std::exp(-PARAM_R * (x - 0.5 * PARAM_R)) * RNG.random_01(); |
---|
496 | } |
---|
497 | |
---|
498 | if (y < std::exp(-0.5 * x * x)) |
---|
499 | break; |
---|
500 | } |
---|
501 | return sign ? x : -x; |
---|
502 | } |
---|
503 | |
---|
504 | //! Get a Normal distributed (0,1) vector |
---|
505 | void sample_vector(int size, vec &out) |
---|
506 | { |
---|
507 | out.set_size(size, false); |
---|
508 | for (int i=0; i<size; i++) out(i) = sample(); |
---|
509 | } |
---|
510 | |
---|
511 | //! Get a Normal distributed (0,1) matrix |
---|
512 | void sample_matrix(int rows, int cols, mat &out) |
---|
513 | { |
---|
514 | out.set_size(rows, cols, false); |
---|
515 | for (int i=0; i<rows*cols; i++) out(i) = sample(); |
---|
516 | } |
---|
517 | private: |
---|
518 | double mean, sigma; |
---|
519 | static const double ytab[128]; |
---|
520 | static const unsigned int ktab[128]; |
---|
521 | static const double wtab[128]; |
---|
522 | static const double PARAM_R; |
---|
523 | Random_Generator RNG; |
---|
524 | }; |
---|
525 | |
---|
526 | /*! |
---|
527 | \brief Laplacian distribution |
---|
528 | \ingroup randgen |
---|
529 | */ |
---|
530 | class Laplace_RNG { |
---|
531 | public: |
---|
532 | //! Constructor. Set mean and variance. |
---|
533 | Laplace_RNG(double meanval = 0.0, double variance = 1.0); |
---|
534 | //! Set mean and variance |
---|
535 | void setup(double meanval, double variance); |
---|
536 | //! Get mean and variance |
---|
537 | void get_setup(double &meanval, double &variance) const; |
---|
538 | //! Get one sample. |
---|
539 | double operator()() { return sample(); } |
---|
540 | //! Get a sample vector. |
---|
541 | vec operator()(int n); |
---|
542 | //! Get a sample matrix. |
---|
543 | mat operator()(int h, int w); |
---|
544 | //! Returns a single sample |
---|
545 | double sample() |
---|
546 | { |
---|
547 | double u = RNG.random_01(); |
---|
548 | double l = sqrt_12var; |
---|
549 | if (u < 0.5) |
---|
550 | l *= std::log(2.0 * u); |
---|
551 | else |
---|
552 | l *= -std::log(2.0 * (1-u)); |
---|
553 | return (l + mean); |
---|
554 | } |
---|
555 | private: |
---|
556 | double mean, var, sqrt_12var; |
---|
557 | Random_Generator RNG; |
---|
558 | }; |
---|
559 | |
---|
560 | /*! |
---|
561 | \brief A Complex Normal Source |
---|
562 | \ingroup randgen |
---|
563 | */ |
---|
564 | class Complex_Normal_RNG { |
---|
565 | public: |
---|
566 | //! Constructor. Set mean and variance. |
---|
567 | Complex_Normal_RNG(std::complex<double> mean, double variance): |
---|
568 | norm_factor(1.0/std::sqrt(2.0)) |
---|
569 | { |
---|
570 | setup(mean, variance); |
---|
571 | } |
---|
572 | //! Default constructor |
---|
573 | Complex_Normal_RNG(): m(0.0), sigma(1.0), norm_factor(1.0/std::sqrt(2.0)) {} |
---|
574 | //! Set mean and variance |
---|
575 | void setup(std::complex<double> mean, double variance) |
---|
576 | { |
---|
577 | m = mean; sigma = std::sqrt(variance); |
---|
578 | } |
---|
579 | //! Get mean and variance |
---|
580 | void get_setup(std::complex<double> &mean, double &variance) |
---|
581 | { |
---|
582 | mean = m; variance = sigma*sigma; |
---|
583 | } |
---|
584 | //! Get one sample. |
---|
585 | std::complex<double> operator()() { return sigma*sample()+m; } |
---|
586 | //! Get a sample vector. |
---|
587 | cvec operator()(int n) |
---|
588 | { |
---|
589 | cvec temp(n); |
---|
590 | sample_vector(n, temp); |
---|
591 | temp *= sigma; |
---|
592 | temp += m; |
---|
593 | return temp; |
---|
594 | } |
---|
595 | //! Get a sample matrix. |
---|
596 | cmat operator()(int h, int w) |
---|
597 | { |
---|
598 | cmat temp(h, w); |
---|
599 | sample_matrix(h, w, temp); |
---|
600 | temp *= sigma; |
---|
601 | temp += m; |
---|
602 | return temp; |
---|
603 | } |
---|
604 | //! Get a Complex Normal (0,1) distributed sample |
---|
605 | std::complex<double> sample() |
---|
606 | { |
---|
607 | double a = nRNG.sample() * norm_factor; |
---|
608 | double b = nRNG.sample() * norm_factor; |
---|
609 | return std::complex<double>(a, b); |
---|
610 | } |
---|
611 | |
---|
612 | //! Get a Complex Normal (0,1) distributed vector |
---|
613 | void sample_vector(int size, cvec &out) |
---|
614 | { |
---|
615 | out.set_size(size, false); |
---|
616 | for (int i=0; i<size; i++) out(i) = sample(); |
---|
617 | } |
---|
618 | |
---|
619 | //! Get a Complex Normal (0,1) distributed matrix |
---|
620 | void sample_matrix(int rows, int cols, cmat &out) |
---|
621 | { |
---|
622 | out.set_size(rows, cols, false); |
---|
623 | for (int i=0; i<rows*cols; i++) out(i) = sample(); |
---|
624 | } |
---|
625 | private: |
---|
626 | std::complex<double> m; |
---|
627 | double sigma; |
---|
628 | const double norm_factor; |
---|
629 | Normal_RNG nRNG; |
---|
630 | }; |
---|
631 | |
---|
632 | /*! |
---|
633 | \brief Filtered normal distribution |
---|
634 | \ingroup randgen |
---|
635 | */ |
---|
636 | class AR1_Normal_RNG { |
---|
637 | public: |
---|
638 | //! Constructor. Set mean, variance, and correlation. |
---|
639 | AR1_Normal_RNG(double meanval = 0.0, double variance = 1.0, |
---|
640 | double rho = 0.0); |
---|
641 | //! Set mean, variance, and correlation |
---|
642 | void setup(double meanval, double variance, double rho); |
---|
643 | //! Get mean, variance and correlation |
---|
644 | void get_setup(double &meanval, double &variance, double &rho) const; |
---|
645 | //! Set memory contents to zero |
---|
646 | void reset(); |
---|
647 | //! Get a single random sample |
---|
648 | double operator()() { return sample(); } |
---|
649 | //! Get a sample vector. |
---|
650 | vec operator()(int n); |
---|
651 | //! Get a sample matrix. |
---|
652 | mat operator()(int h, int w); |
---|
653 | private: |
---|
654 | double sample() |
---|
655 | { |
---|
656 | mem *= r; |
---|
657 | if (odd) { |
---|
658 | r1 = m_2pi * RNG.random_01(); |
---|
659 | r2 = std::sqrt(factr * std::log(RNG.random_01())); |
---|
660 | mem += r2 * std::cos(r1); |
---|
661 | } |
---|
662 | else { |
---|
663 | mem += r2 * std::sin(r1); |
---|
664 | } |
---|
665 | odd = !odd; |
---|
666 | return (mem + mean); |
---|
667 | } |
---|
668 | double mem, r, factr, mean, var, r1, r2; |
---|
669 | bool odd; |
---|
670 | Random_Generator RNG; |
---|
671 | }; |
---|
672 | |
---|
673 | /*! |
---|
674 | \brief Gauss_RNG is the same as Normal Source |
---|
675 | \ingroup randgen |
---|
676 | */ |
---|
677 | typedef Normal_RNG Gauss_RNG; |
---|
678 | |
---|
679 | /*! |
---|
680 | \brief AR1_Gauss_RNG is the same as AR1_Normal_RNG |
---|
681 | \ingroup randgen |
---|
682 | */ |
---|
683 | typedef AR1_Normal_RNG AR1_Gauss_RNG; |
---|
684 | |
---|
685 | /*! |
---|
686 | \brief Weibull distribution |
---|
687 | \ingroup randgen |
---|
688 | */ |
---|
689 | class Weibull_RNG { |
---|
690 | public: |
---|
691 | //! Constructor. Set lambda and beta. |
---|
692 | Weibull_RNG(double lambda = 1.0, double beta = 1.0); |
---|
693 | //! Set lambda, and beta |
---|
694 | void setup(double lambda, double beta); |
---|
695 | //! Get lambda and beta |
---|
696 | void get_setup(double &lambda, double &beta) { lambda = l; beta = b; } |
---|
697 | //! Get one sample. |
---|
698 | double operator()() { return sample(); } |
---|
699 | //! Get a sample vector. |
---|
700 | vec operator()(int n); |
---|
701 | //! Get a sample matrix. |
---|
702 | mat operator()(int h, int w); |
---|
703 | private: |
---|
704 | double sample() |
---|
705 | { |
---|
706 | return (std::pow(-std::log(RNG.random_01()), 1.0/b) / l); |
---|
707 | } |
---|
708 | double l, b; |
---|
709 | double mean, var; |
---|
710 | Random_Generator RNG; |
---|
711 | }; |
---|
712 | |
---|
713 | /*! |
---|
714 | \brief Rayleigh distribution |
---|
715 | \ingroup randgen |
---|
716 | */ |
---|
717 | class Rayleigh_RNG { |
---|
718 | public: |
---|
719 | //! Constructor. Set sigma. |
---|
720 | Rayleigh_RNG(double sigma = 1.0); |
---|
721 | //! Set sigma |
---|
722 | void setup(double sigma) { sig = sigma; } |
---|
723 | //! Get sigma |
---|
724 | double get_setup() { return sig; } |
---|
725 | //! Get one sample. |
---|
726 | double operator()() { return sample(); } |
---|
727 | //! Get a sample vector. |
---|
728 | vec operator()(int n); |
---|
729 | //! Get a sample matrix. |
---|
730 | mat operator()(int h, int w); |
---|
731 | private: |
---|
732 | double sample() |
---|
733 | { |
---|
734 | double s1 = nRNG.sample(); |
---|
735 | double s2 = nRNG.sample(); |
---|
736 | // s1 and s2 are N(0,1) and independent |
---|
737 | return (sig * std::sqrt(s1*s1 + s2*s2)); |
---|
738 | } |
---|
739 | double sig; |
---|
740 | Normal_RNG nRNG; |
---|
741 | }; |
---|
742 | |
---|
743 | /*! |
---|
744 | \brief Rice distribution |
---|
745 | \ingroup randgen |
---|
746 | */ |
---|
747 | class Rice_RNG { |
---|
748 | public: |
---|
749 | //! Constructor. Set sigma, and v (if v = 0, Rice -> Rayleigh). |
---|
750 | Rice_RNG(double sigma = 1.0, double v = 1.0); |
---|
751 | //! Set sigma, and v (if v = 0, Rice -> Rayleigh). |
---|
752 | void setup(double sigma, double v) { sig = sigma; s = v; } |
---|
753 | //! Get parameters |
---|
754 | void get_setup(double &sigma, double &v) { sigma = sig; v = s; } |
---|
755 | //! Get one sample |
---|
756 | double operator()() { return sample(); } |
---|
757 | //! Get a sample vector |
---|
758 | vec operator()(int n); |
---|
759 | //! Get a sample matrix |
---|
760 | mat operator()(int h, int w); |
---|
761 | private: |
---|
762 | double sample() |
---|
763 | { |
---|
764 | double s1 = nRNG.sample() + s; |
---|
765 | double s2 = nRNG.sample(); |
---|
766 | // s1 and s2 are N(0,1) and independent |
---|
767 | return (sig * std::sqrt(s1*s1 + s2*s2)); |
---|
768 | } |
---|
769 | double sig, s; |
---|
770 | Normal_RNG nRNG; |
---|
771 | }; |
---|
772 | |
---|
773 | //! \addtogroup randgen |
---|
774 | //!@{ |
---|
775 | |
---|
776 | //! Generates a random bit (equally likely 0s and 1s) |
---|
777 | inline bin randb(void) { Bernoulli_RNG src; return src.sample(); } |
---|
778 | //! Generates a random bit vector (equally likely 0s and 1s) |
---|
779 | inline void randb(int size, bvec &out) { Bernoulli_RNG src; src.sample_vector(size, out); } |
---|
780 | //! Generates a random bit vector (equally likely 0s and 1s) |
---|
781 | inline bvec randb(int size) { bvec temp; randb(size, temp); return temp; } |
---|
782 | //! Generates a random bit matrix (equally likely 0s and 1s) |
---|
783 | inline void randb(int rows, int cols, bmat &out) { Bernoulli_RNG src; src.sample_matrix(rows, cols, out); } |
---|
784 | //! Generates a random bit matrix (equally likely 0s and 1s) |
---|
785 | inline bmat randb(int rows, int cols){ bmat temp; randb(rows, cols, temp); return temp; } |
---|
786 | |
---|
787 | //! Generates a random uniform (0,1) number |
---|
788 | inline double randu(void) { Uniform_RNG src; return src.sample(); } |
---|
789 | //! Generates a random uniform (0,1) vector |
---|
790 | inline void randu(int size, vec &out) { Uniform_RNG src; src.sample_vector(size, out); } |
---|
791 | //! Generates a random uniform (0,1) vector |
---|
792 | inline vec randu(int size){ vec temp; randu(size, temp); return temp; } |
---|
793 | //! Generates a random uniform (0,1) matrix |
---|
794 | inline void randu(int rows, int cols, mat &out) { Uniform_RNG src; src.sample_matrix(rows, cols, out); } |
---|
795 | //! Generates a random uniform (0,1) matrix |
---|
796 | inline mat randu(int rows, int cols) { mat temp; randu(rows, cols, temp); return temp; } |
---|
797 | |
---|
798 | //! Generates a random integer in the interval [low,high] |
---|
799 | inline int randi(int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(); } |
---|
800 | //! Generates a random ivec with elements in the interval [low,high] |
---|
801 | inline ivec randi(int size, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(size); } |
---|
802 | //! Generates a random imat with elements in the interval [low,high] |
---|
803 | inline imat randi(int rows, int cols, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(rows, cols); } |
---|
804 | |
---|
805 | //! Generates a random Rayleigh vector |
---|
806 | inline vec randray(int size, double sigma = 1.0) { Rayleigh_RNG src; src.setup(sigma); return src(size); } |
---|
807 | |
---|
808 | //! Generates a random Rice vector (See J.G. Poakis, "Digital Communications, 3rd ed." p.47) |
---|
809 | inline vec randrice(int size, double sigma = 1.0, double s = 1.0) { Rice_RNG src; src.setup(sigma, s); return src(size); } |
---|
810 | |
---|
811 | //! Generates a random complex Gaussian vector |
---|
812 | inline vec randexp(int size, double lambda = 1.0) { Exponential_RNG src; src.setup(lambda); return src(size); } |
---|
813 | |
---|
814 | //! Generates a random Gaussian (0,1) variable |
---|
815 | inline double randn(void) { Normal_RNG src; return src.sample(); } |
---|
816 | //! Generates a random Gaussian (0,1) vector |
---|
817 | inline void randn(int size, vec &out) { Normal_RNG src; src.sample_vector(size, out); } |
---|
818 | //! Generates a random Gaussian (0,1) vector |
---|
819 | inline vec randn(int size) { vec temp; randn(size, temp); return temp; } |
---|
820 | //! Generates a random Gaussian (0,1) matrix |
---|
821 | inline void randn(int rows, int cols, mat &out) { Normal_RNG src; src.sample_matrix(rows, cols, out); } |
---|
822 | //! Generates a random Gaussian (0,1) matrix |
---|
823 | inline mat randn(int rows, int cols){ mat temp; randn(rows, cols, temp); return temp; } |
---|
824 | |
---|
825 | /*! \brief Generates a random complex Gaussian (0,1) variable |
---|
826 | |
---|
827 | The real and imaginary parts are independent and have variances equal to 0.5 |
---|
828 | */ |
---|
829 | inline std::complex<double> randn_c(void) { Complex_Normal_RNG src; return src.sample(); } |
---|
830 | //! Generates a random complex Gaussian (0,1) vector |
---|
831 | inline void randn_c(int size, cvec &out) { Complex_Normal_RNG src; src.sample_vector(size, out); } |
---|
832 | //! Generates a random complex Gaussian (0,1) vector |
---|
833 | inline cvec randn_c(int size){ cvec temp; randn_c(size, temp); return temp; } |
---|
834 | //! Generates a random complex Gaussian (0,1) matrix |
---|
835 | inline void randn_c(int rows, int cols, cmat &out) { Complex_Normal_RNG src; src.sample_matrix(rows, cols, out); } |
---|
836 | //! Generates a random complex Gaussian (0,1) matrix |
---|
837 | inline cmat randn_c(int rows, int cols) { cmat temp; randn_c(rows, cols, temp); return temp; } |
---|
838 | |
---|
839 | //!@} |
---|
840 | |
---|
841 | } // namespace itpp |
---|
842 | |
---|
843 | #endif // #ifndef RANDOM_H |
---|