1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definitions of special vectors and matrices |
---|
4 | * \author Tony Ottosson, Tobias Ringstrom, Pal Frenger, Adam Piatyszek and Erik G. Larsson |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * IT++ - C++ library of mathematical, signal processing, speech processing, |
---|
9 | * and communications classes and functions |
---|
10 | * |
---|
11 | * Copyright (C) 1995-2007 (see AUTHORS file for a list of contributors) |
---|
12 | * |
---|
13 | * This program is free software; you can redistribute it and/or modify |
---|
14 | * it under the terms of the GNU General Public License as published by |
---|
15 | * the Free Software Foundation; either version 2 of the License, or |
---|
16 | * (at your option) any later version. |
---|
17 | * |
---|
18 | * This program is distributed in the hope that it will be useful, |
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
21 | * GNU General Public License for more details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License |
---|
24 | * along with this program; if not, write to the Free Software |
---|
25 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
26 | * |
---|
27 | * ------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | |
---|
30 | #ifndef SPECMAT_H |
---|
31 | #define SPECMAT_H |
---|
32 | |
---|
33 | #include <itpp/base/vec.h> |
---|
34 | #include <itpp/base/mat.h> |
---|
35 | |
---|
36 | |
---|
37 | namespace itpp { |
---|
38 | |
---|
39 | /*! |
---|
40 | \brief Return a integer vector with indicies where bvec == 1 |
---|
41 | \ingroup miscfunc |
---|
42 | */ |
---|
43 | ivec find(const bvec &invector); |
---|
44 | |
---|
45 | /*! |
---|
46 | \addtogroup specmat |
---|
47 | */ |
---|
48 | |
---|
49 | //!\addtogroup specmat |
---|
50 | //!@{ |
---|
51 | |
---|
52 | //! A float vector of ones |
---|
53 | vec ones(int size); |
---|
54 | //! A Binary vector of ones |
---|
55 | bvec ones_b(int size); |
---|
56 | //! A Int vector of ones |
---|
57 | ivec ones_i(int size); |
---|
58 | //! A float Complex vector of ones |
---|
59 | cvec ones_c(int size); |
---|
60 | |
---|
61 | //! A float (rows,cols)-matrix of ones |
---|
62 | mat ones(int rows, int cols); |
---|
63 | //! A Binary (rows,cols)-matrix of ones |
---|
64 | bmat ones_b(int rows, int cols); |
---|
65 | //! A Int (rows,cols)-matrix of ones |
---|
66 | imat ones_i(int rows, int cols); |
---|
67 | //! A Double Complex (rows,cols)-matrix of ones |
---|
68 | cmat ones_c(int rows, int cols); |
---|
69 | |
---|
70 | //! A Double vector of zeros |
---|
71 | vec zeros(int size); |
---|
72 | //! A Binary vector of zeros |
---|
73 | bvec zeros_b(int size); |
---|
74 | //! A Int vector of zeros |
---|
75 | ivec zeros_i(int size); |
---|
76 | //! A Double Complex vector of zeros |
---|
77 | cvec zeros_c(int size); |
---|
78 | |
---|
79 | //! A Double (rows,cols)-matrix of zeros |
---|
80 | mat zeros(int rows, int cols); |
---|
81 | //! A Binary (rows,cols)-matrix of zeros |
---|
82 | bmat zeros_b(int rows, int cols); |
---|
83 | //! A Int (rows,cols)-matrix of zeros |
---|
84 | imat zeros_i(int rows, int cols); |
---|
85 | //! A Double Complex (rows,cols)-matrix of zeros |
---|
86 | cmat zeros_c(int rows, int cols); |
---|
87 | |
---|
88 | //! A Double (size,size) unit matrix |
---|
89 | mat eye(int size); |
---|
90 | //! A Binary (size,size) unit matrix |
---|
91 | bmat eye_b(int size); |
---|
92 | //! A Int (size,size) unit matrix |
---|
93 | imat eye_i(int size); |
---|
94 | //! A Double Complex (size,size) unit matrix |
---|
95 | cmat eye_c(int size); |
---|
96 | //! A non-copying version of the eye function. |
---|
97 | template <class T> |
---|
98 | void eye(int size, Mat<T> &m); |
---|
99 | |
---|
100 | //! Impulse vector |
---|
101 | vec impulse(int size); |
---|
102 | //! Linspace (works in the same way as the matlab version) |
---|
103 | vec linspace(double from, double to, int length = 100); |
---|
104 | /*! \brief Zig-zag space function (variation on linspace) |
---|
105 | |
---|
106 | This function is a variation on linspace(). It traverses the points |
---|
107 | in different order. For example |
---|
108 | \code |
---|
109 | zigzag_space(-5,5,3) |
---|
110 | \endcode |
---|
111 | gives the vector |
---|
112 | \code |
---|
113 | [-5 5 0 -2.5 2.5 -3.75 -1.25 1.25 3.75] |
---|
114 | \endcode |
---|
115 | and |
---|
116 | \code |
---|
117 | zigzag_space(-5,5,4) |
---|
118 | \endcode |
---|
119 | gives |
---|
120 | the vector |
---|
121 | \code |
---|
122 | [-5 5 0 -2.5 2.5 -3.75 -1.25 1.25 3.75 -4.375 -3.125 -1.875 -0.625 0.625 1.875 3.125 4.375] |
---|
123 | \endcode |
---|
124 | and so on. |
---|
125 | |
---|
126 | I.e. the function samples the interval [t0,t1] with finer and finer |
---|
127 | density and with points uniformly distributed over the interval, |
---|
128 | rather than from left to right (as does linspace). |
---|
129 | |
---|
130 | The result is a vector of length 1+2^K. |
---|
131 | */ |
---|
132 | vec zigzag_space(double t0, double t1, int K=5); |
---|
133 | |
---|
134 | /*! |
---|
135 | * \brief Hadamard matrix |
---|
136 | * |
---|
137 | * This function constructs a \a size by \a size Hadammard matrix, where |
---|
138 | * \a size is a power of 2. |
---|
139 | */ |
---|
140 | imat hadamard(int size); |
---|
141 | |
---|
142 | /*! |
---|
143 | \brief Jacobsthal matrix. |
---|
144 | |
---|
145 | Constructs an p by p matrix Q where p is a prime (not checked). |
---|
146 | The elements in Q {qij} is given by qij=X(j-i), where X(x) is the |
---|
147 | Legendre symbol given as: |
---|
148 | |
---|
149 | <ul> |
---|
150 | <li> X(x)=0 if x is a multiple of p, </li> |
---|
151 | <li> X(x)=1 if x is a quadratic residue modulo p, </li> |
---|
152 | <li> X(x)=-1 if x is a quadratic nonresidue modulo p. </li> |
---|
153 | </ul> |
---|
154 | |
---|
155 | See Wicker "Error Control Systems for digital communication and storage", p. 134 |
---|
156 | for more information on these topics. Do not check that p is a prime. |
---|
157 | */ |
---|
158 | imat jacobsthal(int p); |
---|
159 | |
---|
160 | /*! |
---|
161 | \brief Conference matrix. |
---|
162 | |
---|
163 | Constructs an n by n matrix C, where n=p^m+1=2 (mod 4) and p is a odd prime (not checked). |
---|
164 | This code only work with m=1, that is n=p+1 and p odd prime. The valid sizes |
---|
165 | of n is then n=6, 14, 18, 30, 38, ... (and not 10, 26, ...). |
---|
166 | C has the property that C*C'=(n-1)I, that is it has orthogonal rows and columns |
---|
167 | in the same way as Hadamard matricies. However, one element in each row (on the |
---|
168 | diagonal) is zeros. The others are {-1,+1}. |
---|
169 | |
---|
170 | For more details see pp. 55-58 in MacWilliams & Sloane "The theory of error correcting codes", |
---|
171 | North-Holland, 1977. |
---|
172 | */ |
---|
173 | imat conference(int n); |
---|
174 | |
---|
175 | /*! |
---|
176 | \brief Computes the Hermitian Toeplitz matrix. |
---|
177 | |
---|
178 | Return the Toeplitz matrix constructed given the first column C, |
---|
179 | and (optionally) the first row R. If the first element of C is not |
---|
180 | the same as the first element of R, the first element of C is |
---|
181 | used. If the second argument is omitted, the first row is taken |
---|
182 | to be the same as the first column. |
---|
183 | |
---|
184 | A square Toeplitz matrix has the form: |
---|
185 | \verbatim |
---|
186 | c(0) r(1) r(2) ... r(n) |
---|
187 | c(1)* c(0) r(1) r(n-1) |
---|
188 | c(2)* c(1)* c(0) r(n-2) |
---|
189 | . . |
---|
190 | . . |
---|
191 | . . |
---|
192 | |
---|
193 | c(n)* c(n-1)* c(n-2)* ... c(0) |
---|
194 | \endverbatim |
---|
195 | */ |
---|
196 | cmat toeplitz(const cvec &c, const cvec &r); |
---|
197 | //! Computes the Hermitian Toeplitz matrix. |
---|
198 | cmat toeplitz(const cvec &c); |
---|
199 | //! Computes the Hermitian Toeplitz matrix. |
---|
200 | mat toeplitz(const vec &c, const vec &r); |
---|
201 | //! Computes the Hermitian Toeplitz matrix. |
---|
202 | mat toeplitz(const vec &c); |
---|
203 | |
---|
204 | //!@} |
---|
205 | |
---|
206 | |
---|
207 | /*! |
---|
208 | \brief Create a rotation matrix that rotates the given plane \c angle radians. Note that the order of the planes are important! |
---|
209 | \ingroup miscfunc |
---|
210 | */ |
---|
211 | mat rotation_matrix(int dim, int plane1, int plane2, double angle); |
---|
212 | |
---|
213 | /*! |
---|
214 | \brief Calcualte the Householder vector |
---|
215 | \ingroup miscfunc |
---|
216 | */ |
---|
217 | void house(const vec &x, vec &v, double &beta); |
---|
218 | |
---|
219 | /*! |
---|
220 | \brief Calculate the Givens rotation values |
---|
221 | \ingroup miscfunc |
---|
222 | */ |
---|
223 | void givens(double a, double b, double &c, double &s); |
---|
224 | |
---|
225 | /*! |
---|
226 | \brief Calculate the Givens rotation matrix |
---|
227 | \ingroup miscfunc |
---|
228 | */ |
---|
229 | void givens(double a, double b, mat &m); |
---|
230 | |
---|
231 | /*! |
---|
232 | \brief Calculate the Givens rotation matrix |
---|
233 | \ingroup miscfunc |
---|
234 | */ |
---|
235 | mat givens(double a, double b); |
---|
236 | |
---|
237 | /*! |
---|
238 | \brief Calculate the transposed Givens rotation matrix |
---|
239 | \ingroup miscfunc |
---|
240 | */ |
---|
241 | void givens_t(double a, double b, mat &m); |
---|
242 | |
---|
243 | /*! |
---|
244 | \brief Calculate the transposed Givens rotation matrix |
---|
245 | \ingroup miscfunc |
---|
246 | */ |
---|
247 | mat givens_t(double a, double b); |
---|
248 | |
---|
249 | /*! |
---|
250 | \relates Vec |
---|
251 | \brief Vector of length 1 |
---|
252 | */ |
---|
253 | template <class T> |
---|
254 | Vec<T> vec_1(T v0) |
---|
255 | { |
---|
256 | Vec<T> v(1); |
---|
257 | v(0) = v0; |
---|
258 | return v; |
---|
259 | } |
---|
260 | |
---|
261 | /*! |
---|
262 | \relates Vec |
---|
263 | \brief Vector of length 2 |
---|
264 | */ |
---|
265 | template <class T> |
---|
266 | Vec<T> vec_2(T v0, T v1) |
---|
267 | { |
---|
268 | Vec<T> v(2); |
---|
269 | v(0) = v0; |
---|
270 | v(1) = v1; |
---|
271 | return v; |
---|
272 | } |
---|
273 | |
---|
274 | /*! |
---|
275 | \relates Vec |
---|
276 | \brief Vector of length 3 |
---|
277 | */ |
---|
278 | template <class T> |
---|
279 | Vec<T> vec_3(T v0, T v1, T v2) |
---|
280 | { |
---|
281 | Vec<T> v(3); |
---|
282 | v(0) = v0; |
---|
283 | v(1) = v1; |
---|
284 | v(2) = v2; |
---|
285 | return v; |
---|
286 | } |
---|
287 | |
---|
288 | /*! |
---|
289 | \relates Mat |
---|
290 | \brief Matrix of size 1 by 1 |
---|
291 | */ |
---|
292 | template <class T> |
---|
293 | Mat<T> mat_1x1(T m00) |
---|
294 | { |
---|
295 | Mat<T> m(1,1); |
---|
296 | m(0,0) = m00; |
---|
297 | return m; |
---|
298 | } |
---|
299 | |
---|
300 | /*! |
---|
301 | \relates Mat |
---|
302 | \brief Matrix of size 1 by 2 |
---|
303 | */ |
---|
304 | template <class T> |
---|
305 | Mat<T> mat_1x2(T m00, T m01) |
---|
306 | { |
---|
307 | Mat<T> m(1,2); |
---|
308 | m(0,0) = m00; m(0,1) = m01; |
---|
309 | return m; |
---|
310 | } |
---|
311 | |
---|
312 | /*! |
---|
313 | \relates Mat |
---|
314 | \brief Matrix of size 2 by 1 |
---|
315 | */ |
---|
316 | template <class T> |
---|
317 | Mat<T> mat_2x1(T m00, |
---|
318 | T m10) |
---|
319 | { |
---|
320 | Mat<T> m(2,1); |
---|
321 | m(0,0) = m00; |
---|
322 | m(1,0) = m10; |
---|
323 | return m; |
---|
324 | } |
---|
325 | |
---|
326 | /*! |
---|
327 | \relates Mat |
---|
328 | \brief Matrix of size 2 by 2 |
---|
329 | */ |
---|
330 | template <class T> |
---|
331 | Mat<T> mat_2x2(T m00, T m01, |
---|
332 | T m10, T m11) |
---|
333 | { |
---|
334 | Mat<T> m(2,2); |
---|
335 | m(0,0) = m00; m(0,1) = m01; |
---|
336 | m(1,0) = m10; m(1,1) = m11; |
---|
337 | return m; |
---|
338 | } |
---|
339 | |
---|
340 | /*! |
---|
341 | \relates Mat |
---|
342 | \brief Matrix of size 1 by 3 |
---|
343 | */ |
---|
344 | template <class T> |
---|
345 | Mat<T> mat_1x3(T m00, T m01, T m02) |
---|
346 | { |
---|
347 | Mat<T> m(1,3); |
---|
348 | m(0,0) = m00; m(0,1) = m01; m(0,2) = m02; |
---|
349 | return m; |
---|
350 | } |
---|
351 | |
---|
352 | /*! |
---|
353 | \relates Mat |
---|
354 | \brief Matrix of size 3 by 1 |
---|
355 | */ |
---|
356 | template <class T> |
---|
357 | Mat<T> mat_3x1(T m00, |
---|
358 | T m10, |
---|
359 | T m20) |
---|
360 | { |
---|
361 | Mat<T> m(3,1); |
---|
362 | m(0,0) = m00; |
---|
363 | m(1,0) = m10; |
---|
364 | m(2,0) = m20; |
---|
365 | return m; |
---|
366 | } |
---|
367 | |
---|
368 | /*! |
---|
369 | \relates Mat |
---|
370 | \brief Matrix of size 2 by 3 |
---|
371 | */ |
---|
372 | template <class T> |
---|
373 | Mat<T> mat_2x3(T m00, T m01, T m02, |
---|
374 | T m10, T m11, T m12) |
---|
375 | { |
---|
376 | Mat<T> m(2,3); |
---|
377 | m(0,0) = m00; m(0,1) = m01; m(0,2) = m02; |
---|
378 | m(1,0) = m10; m(1,1) = m11; m(1,2) = m12; |
---|
379 | return m; |
---|
380 | } |
---|
381 | |
---|
382 | /*! |
---|
383 | \relates Mat |
---|
384 | \brief Matrix of size 3 by 2 |
---|
385 | */ |
---|
386 | template <class T> |
---|
387 | Mat<T> mat_3x2(T m00, T m01, |
---|
388 | T m10, T m11, |
---|
389 | T m20, T m21) |
---|
390 | { |
---|
391 | Mat<T> m(3,2); |
---|
392 | m(0,0) = m00; m(0,1) = m01; |
---|
393 | m(1,0) = m10; m(1,1) = m11; |
---|
394 | m(2,0) = m20; m(2,1) = m21; |
---|
395 | return m; |
---|
396 | } |
---|
397 | |
---|
398 | /*! |
---|
399 | \relates Mat |
---|
400 | \brief Matrix of size 3 by 3 |
---|
401 | */ |
---|
402 | template <class T> |
---|
403 | Mat<T> mat_3x3(T m00, T m01, T m02, |
---|
404 | T m10, T m11, T m12, |
---|
405 | T m20, T m21, T m22) |
---|
406 | { |
---|
407 | Mat<T> m(3,3); |
---|
408 | m(0,0) = m00; m(0,1) = m01; m(0,2) = m02; |
---|
409 | m(1,0) = m10; m(1,1) = m11; m(1,2) = m12; |
---|
410 | m(2,0) = m20; m(2,1) = m21; m(2,2) = m22; |
---|
411 | return m; |
---|
412 | } |
---|
413 | |
---|
414 | } //namespace itpp |
---|
415 | |
---|
416 | #endif // #ifndef SPECMAT_H |
---|