| 293 | | } |
| 294 | | |
| | 293 | |
| | 294 | void ARXpartialforg::bayes ( const vec &val, const vec &cond ) { |
| | 295 | #define LOG2 0.69314718055995 |
| | 296 | vec frg = cond.right(cond.length() - rgrlen); |
| | 297 | vec cond_rgr = cond.left(rgrlen); // regression vector |
| | 298 | |
| | 299 | int dimV = est._V().cols(); |
| | 300 | int nparams = dimV - 1; // number of parameters |
| | 301 | int nalternatives = pow(2, nparams); // number of alternatives |
| | 302 | |
| | 303 | // Permutation matrix |
| | 304 | mat perm_matrix = ones(nalternatives, nparams); |
| | 305 | int i, j, period, idx_from, idx_to, start, end; |
| | 306 | for(i = 0; i < nparams; i++) { |
| | 307 | idx_from = pow(2, i); |
| | 308 | idx_to = 2 * pow(2, i) - 1; |
| | 309 | period = pow(2, i+1); |
| | 310 | j = 0; |
| | 311 | start = idx_from; |
| | 312 | end = idx_to; |
| | 313 | while(start < pow(2, nparams)) { |
| | 314 | perm_matrix.set_submatrix(start, end, i, i, 0); |
| | 315 | j++; |
| | 316 | start = idx_from + period * j; |
| | 317 | end = idx_to + period * j; |
| | 318 | } |
| | 319 | } |
| | 320 | |
| | 321 | // Array of egiws for approximation |
| | 322 | Array<egiw*> egiw_array(nalternatives + 1); |
| | 323 | // No. of conditioning rows in LD |
| | 324 | int nalternatives_cond, position; |
| | 325 | |
| | 326 | for(int i = 0; i < nalternatives; i++) { |
| | 327 | // vector defining alternatives |
| | 328 | vec vec_alt = perm_matrix.get_row(i); |
| | 329 | |
| | 330 | // full alternative or filtered |
| | 331 | if( sum(vec_alt) == vec_alt.length() ) { |
| | 332 | egiw_array(i) = &alter_est; |
| | 333 | continue; |
| | 334 | } else if( sum(vec_alt) == 0 ) { |
| | 335 | egiw_array(i) = &est; |
| | 336 | continue; |
| | 337 | } |
| | 338 | |
| | 339 | nalternatives_cond = sum(vec_alt) + 1; |
| | 340 | ivec vec_perm(0); // permutation vector |
| | 341 | |
| | 342 | for(int j = 0; j < nparams; j++) { |
| | 343 | position = dimV - j - 2; |
| | 344 | if ( vec_alt(position) == 0 ) { |
| | 345 | vec_perm.ins(j, position + 1); |
| | 346 | } |
| | 347 | else { |
| | 348 | vec_perm.ins(0, position + 1); |
| | 349 | } |
| | 350 | } |
| | 351 | vec_perm.ins(0, 0); |
| | 352 | |
| | 353 | ldmat filt (est._V(), vec_perm); |
| | 354 | ldmat alt (alter_est._V(), vec_perm); |
| | 355 | |
| | 356 | mat tmpL(dimV, dimV); |
| | 357 | tmpL.set_rows( 0, alt._L().get_rows(0, nalternatives_cond - 1) ); |
| | 358 | tmpL.set_rows( nalternatives_cond, filt._L().get_rows(nalternatives_cond, nparams) ); |
| | 359 | |
| | 360 | vec tmpD(dimV); |
| | 361 | tmpD.set_subvector( 0, alt._D()(0, nalternatives_cond - 1) ); |
| | 362 | tmpD.set_subvector( nalternatives_cond, filt._D()(nalternatives_cond, nparams) ); |
| | 363 | |
| | 364 | ldmat tmpLD (tmpL, tmpD); |
| | 365 | |
| | 366 | vec_perm = sort_index(vec_perm); |
| | 367 | ldmat newLD (tmpLD, vec_perm); |
| | 368 | |
| | 369 | egiw_array(i) = new egiw(1, newLD, alter_est._nu()); |
| | 370 | } |
| | 371 | |
| | 372 | // Approximation |
| | 373 | double sumVecCommon; // frequently used term |
| | 374 | vec vecNu(nalternatives); // vector of nus of components |
| | 375 | vec vecD(nalternatives); // vector of LS reminders |
| | 376 | vec vecCommon(nalternatives); // vector of common parts |
| | 377 | mat matVecsTheta; // matrix whose rows are theta vects. |
| | 378 | |
| | 379 | for (i = 0; i < nalternatives; i++) { |
| | 380 | vecNu.shift_left( egiw_array(i)->_nu() ); |
| | 381 | vecD.shift_left( egiw_array(i)->_V()._D()(0) ); |
| | 382 | matVecsTheta.append_row( egiw_array(i)->est_theta() ); |
| | 383 | } |
| | 384 | |
| | 385 | vecCommon = elem_mult ( frg, elem_div(vecNu, vecD) ); |
| | 386 | sumVecCommon = sum(vecCommon); |
| | 387 | |
| | 388 | // approximation of est. regr. coefficients |
| | 389 | vec aprEstTheta(nparams); aprEstTheta.zeros(); |
| | 390 | for (i = 0; i < nalternatives; i++) { |
| | 391 | aprEstTheta += matVecsTheta.get_row(i) * vecCommon(i); |
| | 392 | } |
| | 393 | aprEstTheta /= sumVecCommon; |
| | 394 | |
| | 395 | // approximation of degr. of freedom |
| | 396 | double aprNu; |
| | 397 | double A = log( sumVecCommon ); // Term 'A' in equation |
| | 398 | for ( int i = 0; i < nalternatives; i++ ) { |
| | 399 | A += frg(i) * ( log( vecD(i) ) - psi( 0.5 * vecNu(i) ) ); |
| | 400 | } |
| | 401 | aprNu = ( 1 + sqrt(1 + 4 * (A - LOG2)/3 ) ) / ( 2 * (A - LOG2) ); |
| | 402 | |
| | 403 | // approximation of LS reminder D(0,0) |
| | 404 | double aprD = aprNu / sumVecCommon; |
| | 405 | |
| | 406 | // Aproximation of covariance of LS est. |
| | 407 | mat aprC = zeros(nparams, nparams); |
| | 408 | for ( int i = 0; i < nalternatives; i++ ) { |
| | 409 | aprC += egiw_array(i)->est_theta_cov().to_mat() * frg(i); |
| | 410 | vec tmp = ( matVecsTheta.get_row(i) - aprEstTheta ); |
| | 411 | aprC += vecCommon(i) * outer_product( tmp, tmp); |
| | 412 | } |
| | 413 | |
| | 414 | // Construct GiW pdf |
| | 415 | ldmat aprCinv ( inv(aprC) ); |
| | 416 | vec D = concat( aprD, aprCinv._D() ); |
| | 417 | mat L = eye(dimV); |
| | 418 | L.set_submatrix(1, 0, aprCinv._L() * aprEstTheta); |
| | 419 | L.set_submatrix(1, 1, aprCinv._L()); |
| | 420 | ldmat aprLD (L, D); |
| | 421 | est = egiw(1, aprLD, aprNu); |
| | 422 | |
| | 423 | // update |
| | 424 | ARX::bayes ( val, cond_rgr ); |
| | 425 | } |
| | 426 | |
| | 427 | } |
| | 428 | |