Changeset 1054
- Timestamp:
- 06/07/10 17:25:57 (15 years ago)
- Location:
- applications/bdmtoolbox
- Files:
-
- 3 added
- 1 removed
- 11 modified
- 14 moved
Legend:
- Unmodified
- Added
- Removed
-
applications/bdmtoolbox/build_doc.sh
r1049 r1054 5 5 this_dir=`pwd` 6 6 cd doc/from_bdm 7 ./make_all 7 ./make_all.sh 8 8 9 9 cd $this_dir -
applications/bdmtoolbox/doc/from_bdm/make_all.sh
r1053 r1054 6 6 ./process_class.sh bdm::DS 7 7 ./process_class.sh bdm::logger 8 ./process_class.sh bdm::Controller 8 9 9 10 cp -u ../../../../library/doc/html/*.png ../html/bdm_doc -
applications/bdmtoolbox/doc/from_bdm/process_class.sh
r1052 r1054 23 23 24 24 cat tmp__classes | xargs ./filter_annotated.pl 25 cp ../html/bdm_doc/annotated.html ../html/bdm_doc/annotated_$CLASS.html 25 26 CLS_DEF=`echo $CLASS | sed "s/::/_/g"` 27 cp ../html/bdm_doc/annotated.html ../html/bdm_doc/annotated_$CLS_DEF.html -
applications/bdmtoolbox/doc/local/001wrappers.dox
r1044 r1054 1 1 /*! 2 \page bdt_wrappers Elementary functions operating on descriptive matlab structures2 \page bdt_wrappers Use Case #2: Matlab wrappers for BDM functions 3 3 4 4 A wrapper is a mex file that does the following: … … 8 8 9 9 The use of these functions is inefficient, however, it is very usefull for: 10 - operations on parts of the experiment configurations for scenarios, see example in \ref some_ref10 - operations on parts of the experiment configurations for scenarios, see ... 11 11 - insight into the results, e.g. mean values of non-standard densities 12 12 - algorithms written in Matlab using these functions can be trivially re-written into C++ 13 14 13 15 14 General notation of wrappers is: <b> \<class\>_\<function\>.m </b> … … 66 65 67 66 The follwing wrappers are provided: 68 - \b epdf_mean returning mean value of any epdf function in \ref annotated_epdf.67 - \b epdf_mean returning mean value of any epdf function in <a href="annotated_bdm_epdf.html"> list </a>. 69 68 \code 70 69 >> G.class='egamma'; … … 77 76 0.7500 78 77 \endcode 79 - \b epdf_variance returning variance of any epdf function in \ref annotated_epdf.78 - \b epdf_variance returning variance of any epdf function in <a href="annotated_bdm_epdf.html"> list </a>.. 80 79 \code 81 80 >> epdf_variance(G) … … 103 102 \endcode 104 103 105 For up-to-date list of wrappers see files in \ref files.html104 For up-to-date list of wrappers see files in <a href="files.html"> files.html</a> 106 105 107 106 \section bdt_wrp_off Wrappers of offsprings -
applications/bdmtoolbox/doc/local/002mex_classes.dox
r1044 r1054 1 1 /*! 2 \page mex_bdm BDMToolbox Development -combining Matlab classes and BDM classes2 \page mex_bdm Use Case #3: combining Matlab classes and BDM classes 3 3 4 4 The classes written in Matlab can be combined with standard BDM classes via corresponding C++ classes with equal names, i.e. mexBM.m is accepted by C++ class mexBM -
applications/bdmtoolbox/doc/local/01userguide_pdf.dox
r1044 r1054 41 41 \endcode 42 42 43 Other distributions are created analogously, see \ref bdm_doc/annotated_epdf.html43 Other distributions are created analogously, see <a href="annotated_bdm_epdf.html"> list </a>. 44 44 45 45 \section ug_pdf_marg Marginalization and conditioning … … 104 104 Compulsory fields \c g.dim and \c g.dimc are used to check correct dimension of inputs and outputs of the function. 105 105 106 List of functions is in \ref bdm_doc/annotated_fnc106 List of <a href="annotated_bdm_epdf.html"> functions </a>. 107 107 108 108 \section ug_pdf_mex Using Matlab classes of pdfs … … 117 117 See \ref mex_bdm, and files: mex/mex_classes/mexEpdf.m 118 118 119 If you wish to write your own Matlab classes see \ref ug_dev_mat.119 If you wish to write your own Matlab classes see \ref devguide_mat. 120 120 121 For list of all available pdf objects, see \ref annotated_epdf.html , \ref annotated_pdf.html and \ref annotated.html121 For list of all available pdf objects, see <a href="annotated_bdm_epdf.html"> BDM epdfs </a>, <a href="annotated_bdm_pdf.html"> BDM pdfs </a> and <a href="annotated.html"> Matlab classes </a>. 122 122 */ -
applications/bdmtoolbox/doc/local/02userguide_sim.dox
r1044 r1054 2 2 \page userguide_sim BDM Use - System, Data, Simulation 3 3 4 This section serves as introduction to the scenario of data simulation. Since it is the simplest of all scenarios defined in \ref userguide0it also serves as introduction to configuration of an experiment (see \ref ui) and basic decision making objects (bdm::RV and bdm::DS).4 This section serves as introduction to the scenario of data simulation. Since it is the simplest of all scenarios it also serves as introduction to configuration of an experiment (see \ref ui) and basic decision making objects (bdm::RV and bdm::DS). 5 5 6 6 All experiments are demonstrated on mex file \c simulator, which is also available as a standalone application. … … 74 74 75 75 No further specification, e.g. if the data are pre-recorded or computed on-the-fly, are given. 76 For a list of available DataSources, see ...76 For a list of available DataSources, see <a href="annotated_bdm_DS.html"> list </a>. 77 77 78 78 … … 131 131 A standard Data source has two levels, \c logdt and \c logut which means "log all outputs, dt" and "log all inputs, ut". 132 132 Readers familiar with Simulink environment may look at the RV as being unique identifiers of inputs and outputs of simulation blocks. The inputs are connected automatically with the outputs with matching RV. This view is however, very incomplete, RV have more roles than this. 133 134 List is available <a href="annotated_bdm_logger.html"> loggers </a>. 133 135 134 136 \section ug_pdfds How to create a simulator from pdfs … … 250 252 \endcode 251 253 252 For list of all DataSources and loggers, see \ref app_base 254 List of all <a href="annotated_bdm_DS.html"> DataSources </a> and <a href="annotated_bdm_logger.html">loggers </a>. 253 255 */ -
applications/bdmtoolbox/doc/local/03userguide_estim.dox
r1044 r1054 43 43 Implementation of these operations is heavily dependent on the specific class of prior pdf, or its approximations. We can identify only a few principal approaches to this problem. For example, analytical estimation which is possible within sufficient the Exponential Family, or estimation when both prior and posterior are approximated by empirical densities. 44 44 These approaches are first level of descendants of class \c BM, classes bdm::BMEF and bdm::PF, respectively. 45 46 List of all available <a href="annotated_bdm_BM.html"> Bayesian Models </a>. 45 47 46 48 \section ug2_arx_basic Estimation of ARX models … … 185 187 In order to create a new extension of an estimator, copy file with class mexLaplaceBM.m and redefine the methods therein. If needed create new classes for pdfs by inheriting from mexEpdf, it the same way as in the mexLaplace.m example class. 186 188 187 For list of all estimators, see \ref app_base. 189 For list of all Matlab estimators, see <a href="annotated.html"> list </a>. 190 188 191 */ -
applications/bdmtoolbox/doc/local/04userguide_ctrl.dox
r1044 r1054 42 42 variants and approximations of dynamic programming (or optimal control), see []. 43 43 44 List of available <a href="annotated_bdm_Controller.html"> Controllers</a>. 44 45 TODO... 45 46 -
applications/bdmtoolbox/doc/local/20devguide_matlab.dox
r1044 r1054 19 19 See relevant documentation in Matlab. 20 20 21 For list of existing mex* classes see \ref annotated.html21 For list of existing mex* classes see <a href="annotated.html"> list </a>. 22 22 23 23 \section dev_mat_pdf Creating your own probability density -
applications/bdmtoolbox/mex/mex_classes/mexBM.m
r944 r1054 1 %> @file mexEpdf.m 2 %> @brief File mapping root class of BM from BDM 3 % ====================================================================== 4 %> @brief Abstract class of Bayesian Model (estimator), bdm::BM 5 % 6 %> This class provides a bridge between bdm::BM and Matlab 7 % ====================================================================== 1 8 classdef mexBM 2 9 properties 3 % description of internal variables10 %> description of internal variables of parameters 4 11 rv=RV 12 %> description of internal variables of data in condition 5 13 rvc=RV 14 %> description of internal variables of observed data 6 15 rvy=RV 7 % log of evidence (marginal likelihood) potentially computed by the16 %> log of evidence (marginal likelihood) potentially computed by the 8 17 % bayes rule for one step 9 18 log_evidence 10 % posterior density - offspring of mexEpdf!19 %> posterior density - offspring of mexEpdf! 11 20 apost_pdf 12 21 % … … 14 23 15 24 methods 25 %> check consistency of the object and fill defaults 16 26 function p=validate(p) 17 27 % checks if all paramateres match 18 28 end 29 %> dimensionality of the class: dims = [size_of_posterior size_of_data size_of_condition] 19 30 function dims=dimensions(p) 20 31 %please fill … … 22 33 dims = [0,0,0] % 23 34 end 35 %> Performs Bayesian update of the internal posterior using data \a dt and condition \a cond. 24 36 function obj=bayes(obj,dt,cond) 25 37 % transform old estimate into new estimate 26 38 end 39 %> Computes predictor of the observed data in the next step 27 40 function p=epredictor(obj,cond) 28 41 % return posterior density … … 39 52 r=obj.rvy; 40 53 end 54 %> Evidence of the last data, \f[f(y_t|y_0\ldots y_t-1, cond_0\ldots cond_t\f] 41 55 function ev = logevidence(obj) 42 56 ev = obj.log_evidence; 43 57 end 58 %> Posterior pdf 44 59 function post=posterior(obj); 45 60 post = obj.apost_pdf; -
applications/bdmtoolbox/mex/mex_classes/mexDirac.m
r983 r1054 1 %> @file mexDirec.m 2 %> @brief Matlab implementation of Dirac density 3 % ====================================================================== 4 %> @brief Unconditional Dirac density 5 % 6 %> \f[ f(x| x_i) = \delta(x-x_i)\f] 7 % ====================================================================== 1 8 classdef mexDirac < mexEpdf 2 9 % Dirac delta probability distribution -
applications/bdmtoolbox/mex/mex_classes/mexLaplace.m
r944 r1054 1 %> @file mexLaplace.m 2 %> @brief Matrlab implemnetation of Laplace density 3 % ====================================================================== 4 %> @brief Unconditional Laplace density 5 % 6 %> \f[ f(x|\mu,b) \propto \exp(-|x-\mu|/b)\f] 7 % ====================================================================== 1 8 classdef mexLaplace < mexEpdf 2 9 properties