Show
Ignore:
Timestamp:
06/13/10 17:27:15 (14 years ago)
Author:
zimamiro
Message:
 
Files:
1 modified

Legend:

Unmodified
Added
Removed
  • applications/dual/SIDP/text/ch1.tex

    r919 r1090  
    11DEFINICNI OBORY 
    22\section{Formulace � stochastick� �� 
    3 �t�m pojmem v teorii ��e \emph{syst�. Syst�je �t sv�, kterou chceme poznat ��. Budeme-li p�kl�t diskr��ovahu �u, stav syst� v �ov� okam�iku $t$ pod��� horizontu d�y $N$ popisuje syst�rovnic 
     3�t�m pojmem v teorii ��e \emph{syst�. Syst�je �t sv�, kterou chceme poznat ��. Budeme-li p�kl�t diskr��ovahu �u, stav syst� v �ov�okam�iku $t$ pod��� horizontu d�y $N$ popisuje syst�rovnic 
    44\begin{equation} 
    55\label{sys} 
     
    1010V � ��� v�dy p�sanou ztr�vou (resp. �vou) funkci 
    1111\begin{equation} 
    12 g(x_{0:N},u_{0:N-1},w_{0:N-1}). 
     12g(x_{1:N},u_{0:N-1}). 
    1313\end{equation} 
    1414 
    15 Ozna� $U(x_t)$ mno�inu p�tn�d�ch z�h� syst�ve stavu $x_t$. Posloupnost��c� strategi�\pi=\mu_{0:N-1}$ budeme rozum�posloupnost zobrazen�\begin{equation} 
     15Ozna� $U(x_t)$ mno�inu p�tn�d�ch z�h� syst�ve stavu $x_t$. P�tnou ��trategi�\pi=\mu_{0:N-1}$ budeme rozum�posloupnost zobrazen�\begin{equation} 
    1616\label{con} 
    1717\mu_t(x_t)=u_t \, \qquad t=0,1,\ldots,N-1, 
     
    2222\begin{equation} 
    2323\label{los} 
    24 J_\pi(x_0)=\E_{w_{0:N-1}}\left\{g(x_{0:N},\mu_{0:N-1}(x_{0:N-1}),w_{0:N-1})\right\}. 
     24J_\pi(x_0)=\E_{w_{0:N-1}}\left\{g(x_{1:N},\mu_{0:N-1}(x_{0:N-1}))\right\}. 
    2525\end{equation} 
    2626 
    2727�ohou je potom naj�takovou $\pi^*$, pro kterou plat�\begin{equation} 
    28 J_{\pi^*}(x_0)=\min_{\pi \in \Pi}J_\pi(x_0). 
     28J_{\pi^*}(x_0)=\min_{\pi \in \Pi}J_\pi(x_0), 
    2929\end{equation} 
     30kde $\Pi$ zna�mno�inu v�ech p�tn�d�ch strategi� 
    3031 
    3132Celkov�e tedy jedn� optimaliza� � nal� takovou posloupnost funkc�eqref{con}, kter�inimalizuje o��nou ztr�vu \eqref{los} za podm�k \eqref{sys}. 
    3233 
    3334\section{Pou�it�ynamick� programov� p��en�lohy stochastick� �� aditivn�tr�u} 
    34 �ohu stochastick� ��ak, jak byla definov� v p�oz��i, nelze obecn�e�it. Je tedy pot�� n�k bl� specifikovat. V tomto sm� je mo�n�mezit se na n�k�i��var ztr�v�unkce \eqref{los}. Jako vhodn�e�en�e ukazuje uva�ovat tzv. aditivn�var ztr�v�unkce, tedy �e existuj�unkce $g_t$ takov��e m� ps� 
     35�ohu stochastick� ��ak, jak byla definov� v p�oz��i, nelze obecn�e�it. Je tedy pot�� n�k bl� specifikovat. V tomto sm� je mo�n�mezit se na n�k�i��var ztr�v�unkce \eqref{los}. Jako vhodn�e ukazuje uva�ovat tzv. aditivn�var ztr�v�unkce, tedy �e existuj�unkce $g_t$ takov��e m� ps� 
    3536\begin{equation} 
    3637\label{adi} 
    37 g(x_{0:N},u_{0:N-1},w_{0:N-1})=g_N(x_N)+\sum_{t=0}^{N-1}g_t(x_t,u_t,w_t) 
     38g(x_{1:N},u_{0:N-1})=\sum_{t=1}^{N-1}g_t(x_{t+1},u_t). 
    3839\end{equation} 
    3940 
    4041O��nou ztr� \eqref{los} potom m� p�t do tvaru 
    4142\begin{equation} 
    42 J_\pi(x_0)=\E_{w_{0:N-1}}\left\{g_N(x_N)+\sum_{t=0}^{N-1}g_t(x_t,\mu_t(x_t),w_t)\right\} 
     43J_\pi(x_0)=\E_{w_{0:N-1}}\left\{\sum_{t=0}^{N-1}g_t(x_{t+1},\mu_t(x_t))\right\}. 
    4344\end{equation} 
    4445 
    45 Takto specifikovan�loha se d�e�it pou�it�dynamick� programov� []. Dynamick�rogramov� je p�p k ��ptimaliza�ch � na kter�e m� d�t jako na posloupnost rozhodnut�pro kter�lat�zv. princip optimality.  Ten � �e optim��osloupnost rozhodnut��u vlastnost, �e pro libovoln�te� stav a rozhudnut�us��chna n�eduj� rozhodnut�ptim��zhledem k v��zhodnut�rvn�. D� �e pro ztr� tvaru \eqref{adi} plat�rincip optimality je snadn�e ho nal� nap�d v [ref]. 
     46Takto specifikovan�loha se d�e�it pou�it�dynamick� programov� \cite{bellman1957dynamic}. Dynamick�rogramov� je p�p k ��ptimaliza�ch � na kter�e m� d�t jako na posloupnost rozhodnut�pro kter�lat�zv. princip optimality.  Ten � �e optim��osloupnost rozhodnut��u vlastnost, �e pro libovoln�te� stav a rozhudnut�us��chna n�eduj� rozhodnut�ptim��zhledem k v��zhodnut�rvn�. D� �e pro ztr� tvaru \eqref{adi} plat�rincip optimality je snadn�e ho nal� nap�d v \cite{bertsekas1995dynamic}. 
    4647 
    4748P��en�lohy stochastick� �� aditivn�tr�u je tedy mo�n�ostupovat, jak je u ���moc�ynamick� programov� zvykem. Minim��odnotu st� ztr� od okam�iku $t$ do $N$ v z�slosti na $x_t$ ozna�e $J_t(x_t)$. M� pro ni ps� 
    4849\begin{gather} 
    49 J_N(x_N)=g_N(x_N)\\ 
    50 J_t(x_t)=\min_{u_t \in U(x_t)}\E_{w_t}\left\{g_k(x_t,u_t,w_t)+J_{t+1}(f_t(x_t,u_t,w_t))\right\} \qquad t=0,\ldots,N-1 
     50J_N(x_N)=0\\ 
     51J_t(x_t)=\min_{u_t \in U(x_t)}\E_{w_t}\left\{g_k(x_{t+1},u_t)+J_{t+1}(x_{t+1})\right\} \qquad t=0,\ldots,N-1. 
    5152\end{gather} 
    5253 
    53 P��en�udeme postupovat od konce �� horizontu a postupn�ledat $J_t(x_t)$. Potom libovoln�\pi=\{\mu_0,\ldots,\mu_{N-1}\}$, kter�pl� syst�rovnic 
     54P��en�udeme postupovat od konce �� horizontu a postupn�ledat $J_t(x_t)$. Pro v� $x_{t+1}$ se pou�ije rovnice \eqref{sys}.  
     55Libovolnou ��trategii $\pi=\{\mu_0,\ldots,\mu_{N-1}\}$, kter�pl� syst�rovnic 
    5456\begin{equation} 
    5557\label{impl} 
    5658J_t(x_t)=\E_{w_t}\left\{g_k(x_t,\mu_t(x_t),w_t)+J_{t+1}(f_t(x_t,\mu_t(x_t),w_t))\right\} \qquad t=0,\ldots,N-1 
    5759\end{equation} 
    58 je optim��osloupnost rozhodnut� 
     60pak nazveme optim��osloupnost�ozhodnut�