| 41 | \section{Iterativn�ynamick�rogramov�} |
| 42 | |
| 43 | Iterativn�ynamick�rogramov� \cite{luus2000iterative} je jednou z variant klasick� p�pu k nalezen�ptim��trategie, kter�inimalizuje o��nou ztr� \eqref{ilos2}. Standardn�umerick�tup k dynamick� progamov� lze shrnout n�edovn�\begin{enumerate} |
| 44 | \item prostor prom��_t$ se diskretizuje do m�, |
| 45 | \item postupn�e od konce horizontu napo�� minim����n�tr� $J_t(H_t)$ pro ka�d�diskretizace $H_t$. K v� se pou��j�i� napo�n�inim����n�tr� v n�eduj�ch �ech, |
| 46 | \item optim��trategie bude ta, na kter�ude nabyto minim����n�tr� z po�e�ho stavu na konec �� horizontu. |
| 47 | \end{enumerate} |
| 48 | Tento postup je p�arou aplikac�rincipu dynamick� programov�. Bohu�el je velmi citliv�imenzi stavov� prostoru $H_t$, kter�ot�diskretizovat, nebo� po� bod��ch k disretizaci roste exponenci�� dimenz�rostoru. Tato skute�st se v anglick�iteratu�na�e jako "curse of dimenzionality". |
| 49 | |
| 50 | Oproti klasick� dynamick� programov� iterativn�ynamick�rogramov� probl��v s�i iterac�V ka�d�teraci se vych� ze strategie spo�n� p�oz�b� a prost�ctv�perturbac�ohoto (suboptim��) ��e hled�trategie, pro kterou bude o��n�tr� ni���Tato se pou�ije v n�eduj� iteraci. V�st iterativn� p�pu spo��e sn�n�itlivosti na dimenzi �. |
| 51 | |
| 52 | \subsection{Diskretizace prostoru} |
| 53 | P�ed� optim��trategie $\mu_t(H_t)$ je pro p� vy�len���n�tr� \eqref{mon} na � �� horizontu $t\!:\!N$ nutn�n�jej�nalytick�yj�en�To ale nen�bvykle mo�n�Je proto nutn�� k n�k�proximaci, nap�d |
| 54 | \begin{enumerate} |
| 55 | \item p�kl�t n�k� optim��trategie a p�po� ur� pouze konstanty, kter��ou strategii ur�jednozna�, |
| 56 | \item diskretizovat prostor $(H_t)$ a po�at $\mu_t(H_t)$ jen v bodech diskretizace a jinde se uch� interpolaci (pop��xtrapolaci). |
| 57 | \end{enumerate} |
| 58 | |
| 59 | Jak�sobem efektivn�iskretizovat prostor nez�sl�om��o aproximativn�� o��n�tr� \eqref{mon} je p�u�it�ynamick� programov� obt��t�a. Bude-li bod�iskretizace p� m�, bude v� nespolehliv�pak pro p� jemnou diskretizaci bude po� bod�iskretizaci hyperstavu rychle stoupat a �ov���st v� pak prakticky znemo�n�eho �� |
| 60 | |
| 61 | Zde se ukazuje v�st pou�it�terativn� dynamick� programov�, nebo� sta�diskretizovat jen tu �t prostoru kter�ude pot� v n�eduj� iteraci. Pomoc�erturbac�trategie spo�n� p�oz�kroku se ur��t prostoru, kter�e pro bezprost� v� podstatn�D� tomu sta�k dostate� jemn�iskretizaci podstatn�� bod�nkr��mplementace bude probr� d�. |
| 62 | |
| 63 | KONVERGENCE |
55 | | Tento jednoduch�up lze vylep�it v��ov�ovn�m kandid� na optim���n�Jedn�z mo�n�lep�en� je dvou�ov�ritmus poposan�ite{nelson2001simple}. V prvn�� tohoto algoritmu se nejprve pro ka�d� kandid� vygeneruje $n_0$ realizac�Na jejich z�ad�e vyberou ti, na kter�abyto minima s pravd�dobnost���e� je dan�ez $\alpha_0$. Pro tyto se v druh�� vygeneruje dostate� po� realizac�ak, aby bylo mo�n�ejlep��ozhodnut�volit s pravd�dobnost�lespo�vn�adan�ezi $\alpha_1$. Takto upraven�ritmus metody Monte Carlo je robustn�� umo�� porovn� v�� mno�stv�andid�, nebo� po� realizac� prvn�� m������u��ouze k odfiltrov� zjevn�or�� kandid� na �� |
56 | | |
57 | | \section{Iterativn�ynamick�rogramov�} |
58 | | Iterativn�ynamick�rogramov� \cite{luus2000iterative} je jedn� p�p�alezen�ptim��trategie, kter�inimalizuje o��nou ztr� \eqref{ilos2}. Oproti dynamick� programov� se probl��iterativn�Na za�ku se zvol��k�priorn�trategie. V ka�d�teraci se potom vych� ze strategie spo�n� p�oz�kroku a prost�ctv�perturbac�ohoto (suboptim��) ��e hled�trategie, pro kterou bude o�van�tr� ni���Tato se pou�ije v n�eduj� iteraci. |
59 | | |
60 | | \subsection{Diskretizace prostoru} |
61 | | P�ed� optim��trategie $\mu_t(H_t)$ bychom pro p� vy�len���n�tr� \eqref{mon} na � �� horizontu $t\!:\!N$ pot�ali jej�nalytick�yj�en�To ale nen�bvykle mo�n�Je proto nutn�� k n�k�proximaci, nap�d 1) p�kl�t n�k� optim��trategie a p�po� ur� pouze konstanty, kter��ou strategii ur�jednozna�, nebo 2) diskretizovat prostor $(H_t)$ a po�at $\mu_t(H_t)$ jen v bodech diskretizace a jinde se uch� interpolaci (pop��xtrapolaci). |
62 | | |
63 | | Jak�sobem efektivn�iskretizovat prostor nez�sl�om��o aproximativn�� o��n�tr� \eqref{mon} je p�u�it�ynamick� programov� obt��t�a. Bude-li bod�iskretizaci p� m�, bude v� nespolehliv�pak pro p� jemnou diskretizaci bude �ov���st v� rychle stoupat (o �ov���sti SIDP viz d�). Zde se ukazuje v�st pou�it�terativn� dynamick� programov�, nebo� sta�diskretizovat jen tu �t prostoru kter�ude pot� v n�eduj� iteraci. Pomoc�trategie spo�n� p�oz�kroku a n�dn�alizac�umu $v_{0:N}$ a nezn�ho parametru $\theta_{0:N}$ vygenerujeme trajektorie v $(H)_{0:N}$. V ka�d�asov�rovni pak diskretizujeme jen tu �t prostoru, kter�yla zasa�ena. |
64 | | |
65 | | V t� pr� je volena jednoduch�etoda v kter�e spo� nejmen��yperkv� kolem zasa�en�ak, �e se vezme nejmen��yperkv� orientovan�m� sou�ch os, do kter� se vygenerovan�ody vejdou. Prostor se pot�iskretizuje pouze v t� oblasti. Metodu k ur��yperkv�u s obecnou orientac�ze naj�v \cite{bh-eamvb-01}. |
| 81 | V� je p�hov�n�\mu_t(H_t)$ nam�o $J_t(H_t)$ �ov���j��Nam�o p�n�J_t(H_t)$ je toti� nutn��t hodnotu $\mu_t(H_t)$ a n�edn�ygenerovat trajektorii od �u $t$ do konce horizontu. To obn� vygenerovat generovat n�dnou realizace �umu $v_t$ a nezn�ho parametru $\theta$ (pomoc�T_t$), aplikovat ���h, tedy dle \eqref{poz4} vypo�at $y_{t+1}$ a n�edn�eqref{the2} dle vypo�at $T_{t+1}$. T�bude ur� bod v $H_{t+1}$. Zde pak pomoc�nterpolace (a extrapolace) ur�e optim���h, kter�kujeme. Podobn�ako prve tak ur�e n�eduj� bod v $H_{t+2}$, a� nakonec se dostaneme na konec �� horizontu. P�po� postupn�apo��me hodnotu ztr�v�unkce. |
| 125 | |
| 126 | \subsection{Detaily implementace} |
| 127 | �st prosotoru, kter�e bude v n�eduj� iteraci algoritmu diskretizovat se ur�pomoc�ktu�� suboptim�� �� n�dn�alizac�umu $v_{0:N}$ a nezn�ho parametru $\theta_{0:N}$. Pomoc��to realizac�ygenerujeme trajektorie v $H_{0:N}$. V ka�d�asov�rovni pak diskretizujeme jen tu �t prostoru, kterou takto vygenerovan�rajektorie proch�. Sch�ticky je situace zn�rn� v \ref{tra} |
| 128 | |
| 129 | \begin{figure} |
| 130 | \centering |
| 131 | \includegraphics[width=0.5\textwidth]{tra} |
| 132 | \caption{Trajektorie v hyperstavu -- jednotliv�ealizace trajektorie je napo��na pomoc�ealizac�umu a nezn�ho parametru} |
| 133 | \label{tra} |
| 134 | \end{figure} |
| 135 | |
| 136 | |
| 137 | V t� pr� se pro diskretizaci zasa�en��i prostoru vol�ednoduch�etoda, ve kter�e ve sm� sou�ch os spo� nejmen��yperkv� obahuj� vygenerovan�ody. Prostor se pot�iskretizuje pouze v t� oblasti. V pr� \cite{thompson2005stochastic}, kde je metoda SIDP navr�ena, je pro diskretizaci prostoru pou�it hyperkv� s obecnou orientac�Metodu k jeho ur���li auto� \cite{bh-eamvb-01}. Tento postup by m�v� k je�t�fektivn��iskretizaci prostoru. Nicm� metoda, kter�e v na��r� pou�ita se uk�la jako posta��. Nav�je implementa� podstatn�ednodu��� vyhled�n� tabulce s orientac�e sm� sou�ch je rychlej��V� je i to, �e m� snadno zaru� po�adavek na kladn�tyl $P_t$ nezn�ho parametru $\theta$, viz \ref{box} . |
| 138 | |
| 139 | \begin{figure} |
| 140 | \centering |
| 141 | \includegraphics[width=0.25\textwidth]{box} |
| 142 | \caption{Oblast ur�� diskretizaci $H_t$ -- a�liv je objem obecn�rientovan� hyperkv�u men��body v n�nespl� po�adavek na kladn�tyl $P$} |
| 143 | \label{box} |
| 144 | \end{figure} |
| 145 | |
| 146 | M�-li diskretizovanou po�adovanou �t prostoru, je nutn�a ni namapovat dosavadn�apo�n�ptim���n�K tomu se pou�ije interpolace, pop��xtrapolace napo�n� ��V t� pr� je interpolace/extrapolace realizov� jednodu�e pomoc�ejbli��� ji� napo�n� bodu. Mo�n�ep�en�by byla nap�d line��rojekce �v�n��nejbli��� napo�n�d� |
| 147 | Pro ka�d�d�jprve pro ty na konci �� horizontu) se optim���c��h hled�omoc�erturbace st�j�ho suboptim�� ��Pro dan�se proto vygeneruje $m$ kandid� na optim���h, rovnom��olem optim�� z�hu z p��j� iterace. Jako jeden z kandid� na optim���n�e v�dy ponech�t�j� suboptim��e�en� minul�terace. |
| 148 | |
| 149 | Kandid� na ��e nyn�orovnaj�omoc�etody Monte Carlo. Jak ji� bylo pops� v�ro ka�d� kandid� se vygeneruje $n$ realizac�tr�, p�ter�e dle \eqref{mon} spo� pr� |
| 150 | |
| 151 | Nam�o jednoduch� porovn� pomoc�r� lze kandid� na optim���c��h porovnat n�k�istikovan��v��ov�oritmem. Jedno z mo�n�lep�en�e pou�ito i v \cite{thompson2005stochastic}. Konkr��e jedn� dvou�ov�ritmus poposan�ite{nelson2001simple}. V prvn�rovni tohoto algoritmu se nejprve pro ka�d� kandid� $u_t$ vygeneruje $n_0$ realizac�Na jejich z�ad�e vyberou ti, na kter�abyto minima s pravd�dobnost���e� je dan�ez $\alpha_0$. Pro tyto se v druh�� vygeneruje dostate� po� realizac�ak, aby bylo mo�n�ejlep��ozhodnut�volit s pravd�dobnost�lespo�vn�adan�ezi $\alpha_1$. Takto upraven�ritmus metody Monte Carlo je robustn��Nav�umo�� efektivn�orovn� v�� mno�stv�andid�, nebo� po� realizac� prvn�� m������u��ouze k odfiltrov� zjevn�or�� kandid� na ��Pro � t� pr� posta�e z�adn�erze metody Monte Carlo a proto je v n�eduj� implementaci SIDP pou�ita. |