- Timestamp:
- 08/27/10 16:54:35 (14 years ago)
- Location:
- library/bdm/base
- Files:
-
- 2 modified
Legend:
- Unmodified
- Added
- Removed
-
library/bdm/base/bdmbase.cpp
r1064 r1165 559 559 prior().log_level[epdf::logubound]=true; 560 560 } 561 const_cast<epdf&> ( posterior() ).log_register ( L, prefix + L.separator + "apost" ); 561 prior().log_level[epdf::logmean]=true; 562 const_cast<epdf&> ( posterior() ).log_register ( L, prefix + L.separator + "apost" ); 562 563 } 563 564 -
library/bdm/base/bdmbase.h
r1077 r1165 1321 1321 //! Evaluates predictive log-likelihood of the given data record 1322 1322 //! I.e. marginal likelihood of the data with the posterior integrated out. 1323 //! This function evaluates only \f$ y_t \f$, condition is assumed to be the last used in bayes(). 1324 //! See bdm::BM::predictor for conditional version. 1323 //! Shortcut for bdm::BM::predictor().evallog(yt,cond) - sometimes easier to implement. 1325 1324 virtual double logpred ( const vec &yt, const vec &cond ) const NOT_IMPLEMENTED(0.0); 1325 1326 //! Sample from predictor(cond). Implemented as sampling the joint density \f$ f(y_t, \theta_t) \f$ and discarding the sample of \f$ \theta_t \f$. 1327 virtual vec samplepred(const vec &cond=empty_vec) const NOT_IMPLEMENTED(empty_vec); 1326 1328 1327 1329 //! Matrix version of logpred