| 21 | | //prior |
| 22 | | mat V0 = 0.00001 * eye ( 2 ); |
| 23 | | V0 ( 0, 0 ) = 0.1; // |
| 24 | | ARX Ar; |
| 25 | | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 26 | | Ar.set_constant ( true ); |
| 27 | | Ar.validate(); |
| 28 | | // forgetting is default: 1.0 |
| 29 | | mat Data = concat_vertical ( randn ( 1, 100 ), ones ( 1, 100 ) ); |
| 30 | | Ar.bayes_batch ( Data ); |
| 31 | | |
| 32 | | |
| 33 | | } |
| 34 | | |
| | 48 | |
| | 49 | ostringstream o; |
| | 50 | o<<csl; |
| | 51 | return o.str(); |
| | 52 | } */ |
| | 53 | |
| | 54 | double sumastlpec(int k,vector<vec> pole,vector<vec> pravd) { //robi sumu k-teho stlpca, pouzivam na konci pri ratani pravdepodobnosti |
| | 55 | double r=0; |
| | 56 | for (int i=0;i<pole.size();i++) |
| | 57 | { |
| | 58 | r+=pole[i][k]*pravd[i][k]; |
| | 59 | } |
| | 60 | return r; |
| | 61 | } |
| | 62 | |
| | 63 | int main () { |
| | 64 | vector<vector<string>> ADdata; //nacitavanie dat do pola ADdata -funguje spravne |
| | 65 | ifstream myfile("C:\\AD_dataupravene.txt"); |
| | 66 | if (myfile.is_open()) |
| | 67 | { |
| | 68 | while ( myfile.good() ) |
| | 69 | { |
| | 70 | string line; |
| | 71 | getline(myfile,line); |
| | 72 | vector<string> parsed_line; |
| | 73 | while(line.find(' ') != string::npos) //jeden kanal je jeden riadok, na zaciatku a na konci {,}, data oddelene ciarkou a medzerou. |
| | 74 | { |
| | 75 | line.erase(0,1); //toto nie je yrovna peknz sposob,ale pri poslednom nacitani cisla v riadku sme uz nemali ziadnu medyeru a cyklus by sa posledny krat nevykonal, tak tu medzeru odstranujeme vzdy tu |
| | 76 | int loc = line.find(','); //ale pri poslednom cisla to nenajde ziadnu ciaarku, tak potom co prida do parsed_line? |
| | 77 | parsed_line.push_back(line.substr(0,loc)); |
| | 78 | line.erase(0,loc+1); //odstranujeme ciarku za kazdym cislom |
| | 79 | } |
| | 80 | ADdata.push_back(parsed_line); //3927 dat v riadku, 6 riadkov |
| | 81 | } |
| | 82 | } |
| | 83 | myfile.close(); //konec nacitavania dat |
| | 84 | |
| | 85 | vector<vec> norm; //do norm zapisujeme normalizacne faktory |
| | 86 | for (int h=1;h<=2;h++) //cyklus ktory ovplzvnuje konstantu h=1- model s konstantou, h=2, bez konstanty |
| | 87 | { |
| | 88 | bool b; //b pouzivame pri set_constant |
| | 89 | if(h==2) |
| | 90 | b=false; |
| | 91 | else |
| | 92 | b=true; |
| | 93 | int g=2; |
| | 94 | while (g<=4) //cyklus co meni rozmery matice V |
| | 95 | { |
| | 96 | mat V0 = 0.0001 * eye ( g ); // aj tato matica ma vplyv na normalizacny faktor, nemoze byt aj preto taky velky, ako inak by sa dala zvolit? |
| | 97 | |
| | 98 | int p=0; |
| | 99 | while (p<=1) //tento cyklus prechadza vacsinou len raz, vtedy p=0 a nic to neovplvni, ale pri AR(2) modely to bude vykonavat 2 krat aj pre p=1, ked bude brat do condition aj rozne kanale z toho isteho casu |
| | 100 | { |
| | 101 | int i=0; |
| | 102 | while(i < ADdata.size()-p) //niekedy sa ten cyklus ma vykonat len raz, preto nepouzivam for cyklus |
| | 103 | { |
| | 104 | int j=p*(i+1); //j=0 alebo j=i+1 |
| | 105 | |
| | 106 | while(j < ADdata.size()) |
| | 107 | { |
| | 108 | ARX Ar; |
| | 109 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| | 110 | Ar.set_constant ( b ); |
| | 111 | Ar.validate(); // forgetting is default: 1.0 |
| | 112 | vec pomocka; //pri kazdej jednej hypoteze zapisujeme normalizacne faktory do pomocky, tu potom ako riadok pridame do norm |
| | 113 | for(int k = 0;k<341;k++) //prechadyame "po riadkoch", teda v case. Nejake hodnoty su len po index 340, dalej uz #INF000 |
| | 114 | { |
| | 115 | vec condition; |
| | 116 | vec predikce; |
| | 117 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| | 118 | condition.ins(0,ADdata[i][k+1]); |
| | 119 | condition.ins(0,ADdata[j][k+p]);//zmena i -> j aby to bralo regresory z roznych riadkov, ak p=1 bereme data z toho isteho casu |
| | 120 | |
| | 121 | cout << "Pred:" << predikce << ", "; |
| | 122 | cout << "Cond:" << condition << endl; |
| | 123 | |
| | 124 | Ar.bayes(predikce,condition.right(g+h-3)); //z condition berem len urcity pocet prvkov, bud 0, 1,alebo 2, lebo nepotrebujem vzdy vsetky (AR(1) model) |
| | 125 | pomocka.ins(pomocka.size(),Ar.posterior().lognc()); //nie je tu exponenciala! -aby to bolo mensie |
| | 126 | } |
| | 127 | norm.push_back(pomocka); |
| | 128 | if ((g==3 && h==2) || (g==4)) //tento cyklus sa bude opakovat, len ak mame maticu V0 roymeru 4x4, to je AR(2) model s konst, alebo podobne len g=3, h=2, teda AR(2)bez kons |
| | 129 | { |
| | 130 | j++; |
| | 131 | } else |
| | 132 | { |
| | 133 | j=ADdata.size(); //priradenim tejto hodnoty do j sa cyklus uz viac krat nevykona |
| | 134 | } |
| | 135 | } |
| | 136 | if (b==true && g==2) //pre model AR(0) s konstantou robi tento cyklus len raz, v ostatnych pripadoch viac-krat |
| | 137 | { |
| | 138 | i=ADdata.size(); |
| | 139 | } else |
| | 140 | { |
| | 141 | i++; |
| | 142 | } |
| | 143 | } |
| | 144 | if ((g==3 && h==2) || (g==4) ) |
| | 145 | {p++;} else {p=2;} |
| | 146 | } |
| | 147 | if (h==2 && g==3) //pripad g=4, a konstanta zaroven nas uz nezaujima, vtedy to ukoncime |
| | 148 | { |
| | 149 | g=5; //ak priradime takuto hodnotu, cyklus while sa uz nevykona |
| | 150 | } else |
| | 151 | { |
| | 152 | g++; |
| | 153 | } |
| | 154 | } |
| | 155 | } |
| | 156 | |
| | 157 | /* //tu je to povodne |
| | 158 | mat V0 = 0.0001 * eye ( 2 ); //pre pripad samotnej konstanty |
| | 159 | ARX Ar; |
| | 160 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| | 161 | Ar.set_constant ( true ); |
| | 162 | Ar.validate(); // forgetting is default: 1.0 |
| | 163 | vector<double> pom1; |
| | 164 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| | 165 | { |
| | 166 | vec predikce; |
| | 167 | vec cond; |
| | 168 | cond.ins(0,ADdata[3][3]); |
| | 169 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| | 170 | Ar.bayes(predikce,cond.right(0)); |
| | 171 | pom1.push_back(exp(Ar.posterior().lognc())); |
| | 172 | } |
| | 173 | norm.push_back(pom1); |
| | 174 | |
| | 175 | for (int a=2;a<=3;a++) //AR(1) bez a potom s konstantou |
| | 176 | { |
| | 177 | bool b=false; //b pouzivame pri set_constant |
| | 178 | if(a==3) |
| | 179 | b=true; |
| | 180 | mat V0 = 0.0001 * eye ( a ); //pre pripad samotnej konstanty |
| | 181 | |
| | 182 | for (int p=0;p < ADdata.size();p++) |
| | 183 | { |
| | 184 | ARX Ar; |
| | 185 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| | 186 | Ar.set_constant ( b ); |
| | 187 | Ar.validate(); // forgetting is default: 1.0 |
| | 188 | vector<double> pom1; |
| | 189 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| | 190 | { |
| | 191 | vec predikce; |
| | 192 | vec condition; |
| | 193 | condition.ins(0,ADdata[p][k]); |
| | 194 | predikce.ins(0,ADdata[3][k+1]); //predpovede nacitavame a zadavame do Bayes zvlast |
| | 195 | Ar.bayes(predikce,condition); |
| | 196 | pom1.push_back(exp(Ar.posterior().lognc())); |
| | 197 | } |
| | 198 | norm.push_back(pom1); //normalizacne faktory pre urcitu kombinaciu regresorov(teda po kazdom riadku) ulozi do pola norm |
| | 199 | } |
| | 200 | } |
| | 201 | |
| | 202 | |
| | 203 | for (int g=3;g<=4;g++) //tento cyklus je az do konca, raz to robime s konstantou, raz bez. |
| | 204 | { |
| | 205 | bool b; //b pouzivame pri set_constant |
| | 206 | if(g==3) |
| | 207 | b=false; |
| | 208 | else |
| | 209 | b=true; |
| | 210 | mat V0 = 0.0001 * eye ( g ); |
| | 211 | for(int i = 0;i < ADdata.size();i++) //po pocet riadkov, co bz malo byt 6 |
| | 212 | { |
| | 213 | for(int j = i+1; j<ADdata.size();j++) |
| | 214 | { |
| | 215 | ARX Ar; |
| | 216 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| | 217 | Ar.set_constant ( b ); |
| | 218 | Ar.validate(); |
| | 219 | // forgetting is default: 1.0 |
| | 220 | vector<double> pomocka; |
| | 221 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| | 222 | { |
| | 223 | vec condition; |
| | 224 | vec predikce; |
| | 225 | predikce.ins(0,ADdata[3][k+1]); //predpovede nacitavame a zadavame do Bayes zvlast |
| | 226 | condition.ins(0,ADdata[i][k]); |
| | 227 | condition.ins(0,ADdata[j][k]);//zmena i -> j qby to bralo regresory z roznych riadkov |
| | 228 | Ar.bayes(predikce,condition); |
| | 229 | pomocka.push_back(exp(Ar.posterior().lognc())); |
| | 230 | } |
| | 231 | norm.push_back(pomocka); |
| | 232 | } |
| | 233 | } |
| | 234 | for(int i = 0;i < ADdata.size();i++) //po pocet riadkov, co bz malo byt 6 |
| | 235 | { |
| | 236 | for(int j = 0; j<ADdata.size();j++) |
| | 237 | { |
| | 238 | ARX Ar; |
| | 239 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| | 240 | Ar.set_constant ( b ); |
| | 241 | Ar.validate(); |
| | 242 | // forgetting is default: 1.0 |
| | 243 | vector<double> pomocka; |
| | 244 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| | 245 | { |
| | 246 | vec condition; |
| | 247 | vec predikce; |
| | 248 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| | 249 | condition.ins(0,ADdata[i][k]); |
| | 250 | |
| | 251 | condition.ins(0,ADdata[j][k+1]);//zmena i -> j qby to bralo regresory z roznych riadkov |
| | 252 | Ar.bayes(predikce,condition); |
| | 253 | pomocka.push_back(Ar.posterior().lognc()); |
| | 254 | } |
| | 255 | |
| | 256 | norm.push_back(pomocka); |
| | 257 | } |
| | 258 | } |
| | 259 | }*/ |
| | 260 | vector<vec> prsti; //hypotez je 85 |
| | 261 | int m,n,p; |
| | 262 | for(p=0;p<115;p++) //inicializuem apriorne pravdepodobnosti |
| | 263 | { |
| | 264 | vec k; |
| | 265 | k.ins(0,1/115.); |
| | 266 | prsti.push_back(k); |
| | 267 | } |
| | 268 | // v ramci riadku v poli norm su hodnoty pre jednu hypotezu v roznych casoch, pocitanie pravdepodobnosti z norm. faktorov |
| | 269 | for (m=0;m<norm[1].size();m++) |
| | 270 | { double k=sumastlpec(m,norm,prsti); |
| | 271 | for(n=0;n < norm.size();n++) |
| | 272 | { |
| | 273 | prsti[n].ins(prsti[n].size(),norm[n][m]*prsti[n][m]/k); |
| | 274 | } |
| | 275 | } |
| | 276 | ofstream file; //zapis pravdepodobnosti do suboru |
| | 277 | file.open("prsti_hypot.txt"); |
| | 278 | for(int i=0;i < prsti.size();i++) |
| | 279 | { |
| | 280 | for(int j=0;j < prsti[i].size();j++) |
| | 281 | { |
| | 282 | if(j!=prsti[i].size()-1) |
| | 283 | { |
| | 284 | file << prsti[i][j]<<" "; |
| | 285 | }else |
| | 286 | { |
| | 287 | file<<prsti[i][j]<<endl; |
| | 288 | } |
| | 289 | } |
| | 290 | } |
| | 291 | file<<endl; |
| | 292 | file.close(); |
| | 293 | |
| | 294 | } |
| | 295 | |
| | 296 | |
| | 297 | |