21 | | //prior |
22 | | mat V0 = 0.00001 * eye ( 2 ); |
23 | | V0 ( 0, 0 ) = 0.1; // |
24 | | ARX Ar; |
25 | | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
26 | | Ar.set_constant ( true ); |
27 | | Ar.validate(); |
28 | | // forgetting is default: 1.0 |
29 | | mat Data = concat_vertical ( randn ( 1, 100 ), ones ( 1, 100 ) ); |
30 | | Ar.bayes_batch ( Data ); |
31 | | |
32 | | |
33 | | } |
34 | | |
| 48 | |
| 49 | ostringstream o; |
| 50 | o<<csl; |
| 51 | return o.str(); |
| 52 | } */ |
| 53 | |
| 54 | double sumastlpec(int k,vector<vec> pole,vector<vec> pravd) { //robi sumu k-teho stlpca, pouzivam na konci pri ratani pravdepodobnosti |
| 55 | double r=0; |
| 56 | for (int i=0;i<pole.size();i++) |
| 57 | { |
| 58 | r+=pole[i][k]*pravd[i][k]; |
| 59 | } |
| 60 | return r; |
| 61 | } |
| 62 | |
| 63 | int main () { |
| 64 | vector<vector<string>> ADdata; //nacitavanie dat do pola ADdata -funguje spravne |
| 65 | ifstream myfile("C:\\AD_dataupravene.txt"); |
| 66 | if (myfile.is_open()) |
| 67 | { |
| 68 | while ( myfile.good() ) |
| 69 | { |
| 70 | string line; |
| 71 | getline(myfile,line); |
| 72 | vector<string> parsed_line; |
| 73 | while(line.find(' ') != string::npos) //jeden kanal je jeden riadok, na zaciatku a na konci {,}, data oddelene ciarkou a medzerou. |
| 74 | { |
| 75 | line.erase(0,1); //toto nie je yrovna peknz sposob,ale pri poslednom nacitani cisla v riadku sme uz nemali ziadnu medyeru a cyklus by sa posledny krat nevykonal, tak tu medzeru odstranujeme vzdy tu |
| 76 | int loc = line.find(','); //ale pri poslednom cisla to nenajde ziadnu ciaarku, tak potom co prida do parsed_line? |
| 77 | parsed_line.push_back(line.substr(0,loc)); |
| 78 | line.erase(0,loc+1); //odstranujeme ciarku za kazdym cislom |
| 79 | } |
| 80 | ADdata.push_back(parsed_line); //3927 dat v riadku, 6 riadkov |
| 81 | } |
| 82 | } |
| 83 | myfile.close(); //konec nacitavania dat |
| 84 | |
| 85 | vector<vec> norm; //do norm zapisujeme normalizacne faktory |
| 86 | for (int h=1;h<=2;h++) //cyklus ktory ovplzvnuje konstantu h=1- model s konstantou, h=2, bez konstanty |
| 87 | { |
| 88 | bool b; //b pouzivame pri set_constant |
| 89 | if(h==2) |
| 90 | b=false; |
| 91 | else |
| 92 | b=true; |
| 93 | int g=2; |
| 94 | while (g<=4) //cyklus co meni rozmery matice V |
| 95 | { |
| 96 | mat V0 = 0.0001 * eye ( g ); // aj tato matica ma vplyv na normalizacny faktor, nemoze byt aj preto taky velky, ako inak by sa dala zvolit? |
| 97 | |
| 98 | int p=0; |
| 99 | while (p<=1) //tento cyklus prechadza vacsinou len raz, vtedy p=0 a nic to neovplvni, ale pri AR(2) modely to bude vykonavat 2 krat aj pre p=1, ked bude brat do condition aj rozne kanale z toho isteho casu |
| 100 | { |
| 101 | int i=0; |
| 102 | while(i < ADdata.size()-p) //niekedy sa ten cyklus ma vykonat len raz, preto nepouzivam for cyklus |
| 103 | { |
| 104 | int j=p*(i+1); //j=0 alebo j=i+1 |
| 105 | |
| 106 | while(j < ADdata.size()) |
| 107 | { |
| 108 | ARX Ar; |
| 109 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 110 | Ar.set_constant ( b ); |
| 111 | Ar.validate(); // forgetting is default: 1.0 |
| 112 | vec pomocka; //pri kazdej jednej hypoteze zapisujeme normalizacne faktory do pomocky, tu potom ako riadok pridame do norm |
| 113 | for(int k = 0;k<341;k++) //prechadyame "po riadkoch", teda v case. Nejake hodnoty su len po index 340, dalej uz #INF000 |
| 114 | { |
| 115 | vec condition; |
| 116 | vec predikce; |
| 117 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| 118 | condition.ins(0,ADdata[i][k+1]); |
| 119 | condition.ins(0,ADdata[j][k+p]);//zmena i -> j aby to bralo regresory z roznych riadkov, ak p=1 bereme data z toho isteho casu |
| 120 | |
| 121 | cout << "Pred:" << predikce << ", "; |
| 122 | cout << "Cond:" << condition << endl; |
| 123 | |
| 124 | Ar.bayes(predikce,condition.right(g+h-3)); //z condition berem len urcity pocet prvkov, bud 0, 1,alebo 2, lebo nepotrebujem vzdy vsetky (AR(1) model) |
| 125 | pomocka.ins(pomocka.size(),Ar.posterior().lognc()); //nie je tu exponenciala! -aby to bolo mensie |
| 126 | } |
| 127 | norm.push_back(pomocka); |
| 128 | if ((g==3 && h==2) || (g==4)) //tento cyklus sa bude opakovat, len ak mame maticu V0 roymeru 4x4, to je AR(2) model s konst, alebo podobne len g=3, h=2, teda AR(2)bez kons |
| 129 | { |
| 130 | j++; |
| 131 | } else |
| 132 | { |
| 133 | j=ADdata.size(); //priradenim tejto hodnoty do j sa cyklus uz viac krat nevykona |
| 134 | } |
| 135 | } |
| 136 | if (b==true && g==2) //pre model AR(0) s konstantou robi tento cyklus len raz, v ostatnych pripadoch viac-krat |
| 137 | { |
| 138 | i=ADdata.size(); |
| 139 | } else |
| 140 | { |
| 141 | i++; |
| 142 | } |
| 143 | } |
| 144 | if ((g==3 && h==2) || (g==4) ) |
| 145 | {p++;} else {p=2;} |
| 146 | } |
| 147 | if (h==2 && g==3) //pripad g=4, a konstanta zaroven nas uz nezaujima, vtedy to ukoncime |
| 148 | { |
| 149 | g=5; //ak priradime takuto hodnotu, cyklus while sa uz nevykona |
| 150 | } else |
| 151 | { |
| 152 | g++; |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | /* //tu je to povodne |
| 158 | mat V0 = 0.0001 * eye ( 2 ); //pre pripad samotnej konstanty |
| 159 | ARX Ar; |
| 160 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 161 | Ar.set_constant ( true ); |
| 162 | Ar.validate(); // forgetting is default: 1.0 |
| 163 | vector<double> pom1; |
| 164 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| 165 | { |
| 166 | vec predikce; |
| 167 | vec cond; |
| 168 | cond.ins(0,ADdata[3][3]); |
| 169 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| 170 | Ar.bayes(predikce,cond.right(0)); |
| 171 | pom1.push_back(exp(Ar.posterior().lognc())); |
| 172 | } |
| 173 | norm.push_back(pom1); |
| 174 | |
| 175 | for (int a=2;a<=3;a++) //AR(1) bez a potom s konstantou |
| 176 | { |
| 177 | bool b=false; //b pouzivame pri set_constant |
| 178 | if(a==3) |
| 179 | b=true; |
| 180 | mat V0 = 0.0001 * eye ( a ); //pre pripad samotnej konstanty |
| 181 | |
| 182 | for (int p=0;p < ADdata.size();p++) |
| 183 | { |
| 184 | ARX Ar; |
| 185 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 186 | Ar.set_constant ( b ); |
| 187 | Ar.validate(); // forgetting is default: 1.0 |
| 188 | vector<double> pom1; |
| 189 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| 190 | { |
| 191 | vec predikce; |
| 192 | vec condition; |
| 193 | condition.ins(0,ADdata[p][k]); |
| 194 | predikce.ins(0,ADdata[3][k+1]); //predpovede nacitavame a zadavame do Bayes zvlast |
| 195 | Ar.bayes(predikce,condition); |
| 196 | pom1.push_back(exp(Ar.posterior().lognc())); |
| 197 | } |
| 198 | norm.push_back(pom1); //normalizacne faktory pre urcitu kombinaciu regresorov(teda po kazdom riadku) ulozi do pola norm |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | |
| 203 | for (int g=3;g<=4;g++) //tento cyklus je az do konca, raz to robime s konstantou, raz bez. |
| 204 | { |
| 205 | bool b; //b pouzivame pri set_constant |
| 206 | if(g==3) |
| 207 | b=false; |
| 208 | else |
| 209 | b=true; |
| 210 | mat V0 = 0.0001 * eye ( g ); |
| 211 | for(int i = 0;i < ADdata.size();i++) //po pocet riadkov, co bz malo byt 6 |
| 212 | { |
| 213 | for(int j = i+1; j<ADdata.size();j++) |
| 214 | { |
| 215 | ARX Ar; |
| 216 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 217 | Ar.set_constant ( b ); |
| 218 | Ar.validate(); |
| 219 | // forgetting is default: 1.0 |
| 220 | vector<double> pomocka; |
| 221 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| 222 | { |
| 223 | vec condition; |
| 224 | vec predikce; |
| 225 | predikce.ins(0,ADdata[3][k+1]); //predpovede nacitavame a zadavame do Bayes zvlast |
| 226 | condition.ins(0,ADdata[i][k]); |
| 227 | condition.ins(0,ADdata[j][k]);//zmena i -> j qby to bralo regresory z roznych riadkov |
| 228 | Ar.bayes(predikce,condition); |
| 229 | pomocka.push_back(exp(Ar.posterior().lognc())); |
| 230 | } |
| 231 | norm.push_back(pomocka); |
| 232 | } |
| 233 | } |
| 234 | for(int i = 0;i < ADdata.size();i++) //po pocet riadkov, co bz malo byt 6 |
| 235 | { |
| 236 | for(int j = 0; j<ADdata.size();j++) |
| 237 | { |
| 238 | ARX Ar; |
| 239 | Ar.set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
| 240 | Ar.set_constant ( b ); |
| 241 | Ar.validate(); |
| 242 | // forgetting is default: 1.0 |
| 243 | vector<double> pomocka; |
| 244 | for(int k = 0;k<140;k++) //prechadyame "po riadkoch" |
| 245 | { |
| 246 | vec condition; |
| 247 | vec predikce; |
| 248 | predikce.ins(0,ADdata[3][k+2]); //predpovede nacitavame a zadavame do Bayes zvlast |
| 249 | condition.ins(0,ADdata[i][k]); |
| 250 | |
| 251 | condition.ins(0,ADdata[j][k+1]);//zmena i -> j qby to bralo regresory z roznych riadkov |
| 252 | Ar.bayes(predikce,condition); |
| 253 | pomocka.push_back(Ar.posterior().lognc()); |
| 254 | } |
| 255 | |
| 256 | norm.push_back(pomocka); |
| 257 | } |
| 258 | } |
| 259 | }*/ |
| 260 | vector<vec> prsti; //hypotez je 85 |
| 261 | int m,n,p; |
| 262 | for(p=0;p<115;p++) //inicializuem apriorne pravdepodobnosti |
| 263 | { |
| 264 | vec k; |
| 265 | k.ins(0,1/115.); |
| 266 | prsti.push_back(k); |
| 267 | } |
| 268 | // v ramci riadku v poli norm su hodnoty pre jednu hypotezu v roznych casoch, pocitanie pravdepodobnosti z norm. faktorov |
| 269 | for (m=0;m<norm[1].size();m++) |
| 270 | { double k=sumastlpec(m,norm,prsti); |
| 271 | for(n=0;n < norm.size();n++) |
| 272 | { |
| 273 | prsti[n].ins(prsti[n].size(),norm[n][m]*prsti[n][m]/k); |
| 274 | } |
| 275 | } |
| 276 | ofstream file; //zapis pravdepodobnosti do suboru |
| 277 | file.open("prsti_hypot.txt"); |
| 278 | for(int i=0;i < prsti.size();i++) |
| 279 | { |
| 280 | for(int j=0;j < prsti[i].size();j++) |
| 281 | { |
| 282 | if(j!=prsti[i].size()-1) |
| 283 | { |
| 284 | file << prsti[i][j]<<" "; |
| 285 | }else |
| 286 | { |
| 287 | file<<prsti[i][j]<<endl; |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | file<<endl; |
| 292 | file.close(); |
| 293 | |
| 294 | } |
| 295 | |
| 296 | |
| 297 | |