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Standard “indifference-zone” procedures that allocate computer resources to infer the best of a finite set of simulated systems are designed
with a statistically conservative, least favorable configuration assumption consider the probability of correct selection (but not the oppor-
tunity cost) and assume that the cost of simulating each system is the same. Recent Bayesian work considers opportunity cost and shows
that an average case analysis may be less conservative but assumes a known output variance, an assumption that typically is violated in
simulation. This paper presents new two-stage and sequential selection procedures that integrate attractive features of both lines of research.
They are derived assuming that the simulation output is normally distributed with unknown mean and variance that may differ for each
system. We permit the reduction of either opportunity cost loss or the probability of incorrect selection and allow for different replication
costs for each system. The generality of our formulation comes at the expense of difficulty in obtaining exact closed-form solutions.
We therefore derive a bound for the expected loss associated potentially incorrect selections, then asymptotically minimize that bound.
Theoretical and empirical results indicate that our approach compares favorably with indifference-zone procedures.

An important use of stochastic simulation is the iden-
tification of the best of several alternative systems,
where “best” is defined in terms of the maximum (or min-
imum) mean value of simulation output (Law and Kelton
1991, Banks et al. 1996). There is therefore interest in
statistical selection procedures to identify the best sys-
tem (Matejcik and Nelson 1995, Bechhofer et al. 1995,
Goldsman and Nelson 1998). Typically, a few simulation
replications for each system are run in a preliminary stage,
and the decision-maker measures the evidence that a given
system is best. If the evidence is insufficient, additional
replications are run to obtain more information about the
identity of the best system.

Well-known indifference-zone procedures determine the
number of additional replications based on a statistically
conservative, least favorable configuration (LFC) assump-
tion (Rinott 1978, Bechhofer et al. 1995). Some Bayesian
approaches to the problem of selecting the best system
(Chen 1996; Gupta and Miescke 1994, 1996) incorpo-
rate first-stage sample mean information that is ignored by
indifference-zone procedures. They suggest that an aver-
age case analysis may lead to a significant reduction in
computing effort, relative to indifference-zone procedures.
However, these Bayesian formulations formally assume a
known output variance, an assumption that is likely to be
violated in simulation practice.

This paper derives new two-stage and sequential selec-
tion procedures that integrate attractive features of both
lines of research, and it provides additional flexibility to
address practical concerns. First, the new procedures are
derived with a Bayesian, average case analysis to avoid

the statistically conservative LFC assumption. Second,
we assume that the variance for each system may be
different and unknown, a feature of some indifference-
zone procedures that is not formally afforded by previ-
ous Bayesian developments. Further, we allow the analyst
either to increase the probability of correct selection or to
reduce the expected opportunity cost of potentially incor-
rect selections. Indifference-zone procedures consider only
the probability of correct selection. Finally, we allow for
a computing budget constraint and permit the cost of each
system’s simulations to be different. None of the work men-
tioned above explicitly accounts for differing simulation
costs.

Medicine and agriculture also employ statistical
procedures to select the best system. (“Which population
has the highest average blood cholesterol?,” “Which crop
treatment improves harvest the most?””) This paper applies
to those fields as well, although the relevant terminology
differs (replace “replication” with “sample,” and “system”
with “treatment”).

In §1 we recall two indifference-zone procedures (Rinott
1978, Goldsman and Nelson 1998) that serve as references
for comparison. We motivate our general Bayesian formu-
lation and explain how it differs from the indifference-zone
approach in §2. Closed-form solutions of certain special
cases (e.g., known variance, common sampling costs, allo-
cation of a single sample) are known (Gupta and Miescke
1994, 1996; Berger 1988), but a closed-form solution to the
general problem is unknown at present. Here we develop
suboptimal allocations of additional replications for the
general problem by asymptotically minimizing a bound on
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the expected loss (cost of replications plus expected loss
for potentially selecting an inferior system). New two-stage
procedures that reduce the expected opportunity cost and
the probability of incorrect selection are presented and jus-
tified in §3.1 and §3.2, respectively. We provide sequen-
tial analogs of those procedures in §3.3, in an attempt to
provide further sampling efficiencies. The new procedures
compare favorably with indifference-zone procedures in an
empirical study in §4.

1. BACKGROUND

The indifference-zone formulation has strongly influenced
the design of procedures for identifying the best of k
systems. The idea is to identify the best system with a
guaranteed lower bound P* on the probability of correct
selection (PCS), given the assumption that the best is better
than the other systems by at least 6*, the smallest differ-
ence worth detecting in the opinion of a decision-maker.
Indifference-zone procedures are statistically conservative
because second-stage replications are allocated to guaran-
tee the probability of correct selection when the unknown
means are in the LFC.

To benchmark the new procedures in §3, we present two
indifference-zone procedures that provide PCS guarantees
when the simulation output is normally distributed.

Rinott (1978) proposes a well-known two-stage pro-
cedure that we call Procedure 2. First, 6*, P*, and the
first-stage sample size r, are specified. Independent repli-
cations X; , ..., x; , are run for each system, i=1,... ,k,
and the first-stage sample mean x; = Z;":, x; ;/7o and sam-
ple variance 67 =37, (x; ; — %;)*/(r, — 1) are computed.
The number of second-stage replications r = (r;, ..., r,)
depends on &%, 7, r,, and the solution g = g(k, P*, ry—1)
to Rinott’s integral (e.g., see Bechhofer et al. 1995),

r, =max{0, [(é)zaf’ —ro}. )

After the second stage, the system with the highest overall
sample mean is selected as best.

The total number of replications ry+ r; per system is
proportional to &7 if ry is small, regardless of the first-
stage sample mean. Simulating systems with clearly infe-
rior first-stage sample means may be unnecessary. This
motivates the combined screening and selection procedure
of Goldsman and Nelson (1998), called Procedure € here,
which attempts to improve sampling efficiency by paring
out noncompetitive systems using a subset selection tech-
nique. Nelson et al. (1999) present empirical evidence that
Procedure € outperforms Procedure & over a range of set-
tings.

PROCEDURE €, A COMBINED SCREENING AND
SELECTION PROCEDURE.

1. Specify the indifference-zone parameter 6*, probabil-
ity of correct selection guarantee P* = 1—a, and first-
stage sample size ry 2 2. Set t = t;__g/2)1/6-1 515
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and let g,, = g(k,1 —a/2,r,— 1) solve Rinott’s
integral.

2. Take independent replications x; |, ...
system, i=1,... k.

3. For each system, compute the first-stage sample
mean X, = 3.1, x; ;/r, and sample variance 7 =
Z;O=l (x;,— %)/ (ro—1).

4. Calculate the quantity w; = t((67 +67)/ry)"/? for all
i # j. Form the screening subset I, containing each
system i such that

s Xin for each

X 2 X;— (w; — 6%)* for all j #i.

S. If I contains a single index, then stop and return that
system as the best. Otherwise, for all i € I, compute
the second-stage sample sizes

r; = max{0, [(ga/z/S*)z&iz] =1}

6. Take r; additional observations from all systems i € I,
independent of all other replications for all systems.

7. Estimate the means with the overall sample means
X;= Z;O:;ri xi.j/(r0+ri)' _

8. Select the system with the largest x; as best.

2. AN ALTERNATE FORMULATION

While Procedure € improves on Procedure & by incor-
porating some first-stage sample information about the
unknown mean performance of each system, it does not
incorporate all such information. The Bayesian decision-
theoretic formulation presented here attempts to improve
second-stage sampling efficiency by incorporating addi-
tional first-stage information into the allocation decision.
We also describe useful flexibility that the Bayesian
approach offers that indifference-zone approach has not yet
offered.

Assume that the simulation output x; ; for system i is
normally distributed with an unknown mean w; and vari-
ance o?(i=1,...,k;j=1,...), and that the x; ; are
jointly independent. It will be easier at times to refer
to the precision A; = 1/0? instead of the variance. Set
w=(w,...,w) and A =(A,,..., A). Throughout, we
write vectors in boldface, random variables in upper case,
and their realizations in lower case.

We incorporate first-stage information by assigning
a prior distribution and using Bayes’ rule to infer the val-
ues of the unknown mean W, and precision A;. Alloca-
tions are then made with respect to the expected probability
of correct selection rather than the worst-case LFC. If we
assume a noninformative prior distribution, it is straight-
forward (de Groot 1970) to show that after observing the
first-stage output, the joint distribution for W; and A, is a
normal-gamma distribution,

A ~6((rp—1)/2, &iz(ro_l)/z), 2
Wil ~ N (Ei A7 o), (3)
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where the gamma distribution 4(«, ) has mean «/8 and
variance «/f3%, and the normal distribution W (w, o) has
mean pu and variance o2. Further, the marginal distribution
and frequentist confidence interval for the unknown mean
are both described by the same three-parameter Student-t
distribution,

W, ~ St(X;, ry/ 67, rg— 1), @

where the three-parameter Student-t distribution St (u, «, v)
has mean p, precision «, and degrees of freedom v. When
v > 2, the variance is k™ 'v/(v —2).

The probability of correct selection is an essential feature
of indifference-zone procedures. We therefore consider the
0-1 loss function associated with selecting i as best when
the means are actually w,

0 when w, = max; w;,

550-1(", W) = { (5)

1  otherwise.
The expectation Ew[<¥,.,(i, w)] is the probability that i is
not the best system.

In many business and engineering applications, however,
the expected opportunity cost is more relevant to a decision
maker. For example, a 90% chance of incorrect selection
with a loss of $1 may be preferable to a 1% chance of los-
ing $1 million. We therefore also consider the opportunity
cost (sometimes called the linear loss)

%, . (i, w) = max w; —w;. 6)
J

The loss is 0 when the best system is correctly selected—
otherwise the loss is the difference in means between the
best and the selected system.

In practice, there may be a deadline for completing a
simulation analysis, and the CPU times per replication
c¢=(c,...,c,) may differ for each system. For instance,
conclusions from a simulation study may be needed in
24 hours, and simulations of systems with complex algo-
rithms for factory floor control may take longer to complete
than for systems with simple control algorithms. This moti-
vates a budget-constrained allocation, with er” = b. Fur-
ther, if ¢ can be converted to units that match the simulation
output (say, dollars), then a trade-off can be made between
additional replications and the expected value of informa-
tion from those replications (an unconstrained budget allo-
cation). The total number of replications can be constrained
to be b, regardless of the CPU time for each replication,
by setting ¢ = (1,...,1).

The goal is to determine the second-stage allocation r
that minimizes the cost of replications plus the expected
loss to a decision maker after all replications have been
run. Let X, = (x; 415 -+ » X; ,4,,) denote the second-stage
output for system i, and let x, = (x,,,...,X, ) denote all
second-stage output. The number of stages of data used for
an estimate is given by the number of bars or hats, so that
the overall sample mean is

_ ro+r;
x=3. x;, ;/(ro+r),
=

A2 =
and 0, = L7 (x; ;— x)?/(ro+r,— 1) is the overall
sample variance. Then the posterior distribution of the

unknown mean, conditional on x,, is (de Groot 1970)
- a2
Wilx, ~St(x;, (ro+1r)/0;, ro+r—1). (7

Let " (x,) = max; ch,. be the system with the highest overall
sample mean. Given x,, the expected loss for loss function
% is vy [£(dV (%), W) | ]

Because r is chosen before the second stage, we take
the expectation with respect to the random variable X.
The cost of replications plus the expected loss for select-
ing the system with the maximum overall sample mean is
therefore

def
p(r) = er’ + Ex [Ewy, [£(d" (X,), W) | X ]]. ®)
This leads to the following optimization problem:
minp(r), st. ;20 fori=1,... k. ©)

Special cases of the problem in Equation (9) have been
solved elsewhere. Gupta and Miescke (1994) show that
when k =2,c¢, = ¢,, and the budget is constrained, the
optimal second-stage allocation minimizes the absolute
difference of the posterior precision for the mean of each
system, regardless of whether the 0-1 loss or opportunity
cost is used. For the opportunity cost, k > 2,¢, =--- =
¢, = 1, and known precision, Gupta and Miescke (1996)
provide an optimal allocation assuming that only one obser-
vation can be made (b = 1). Repeatedly allocating a sin-
gle replication at a time leads to a one-at-a-time sequential
procedure that may not be optimal amongst all sequential
procedures (Berger 1985).

3. NEW TWO-STAGE AND
SEQUENTIAL PROCEDURES

The general formulation in §2 allows flexibility for allo-
cating replications that is not allowed by the indifference-
zone approach, but there is currently no known closed-form
solution for the general problem in Equation (9). Further,
numerical determination of the optimal allocation may be
so computationally demanding that time might be better
spent running more simulations rather than determining an
optimal allocation.

This section derives good allocations of replications that
are much simpler to compute than the optimal alloca-
tion. The allocations asymptotically minimize a bound on
the expected loss. The bound is obtained by examining
the k — 1 pairwise comparisons between the system with the
highest first-stage sample mean and each other system. We
use this idea to derive procedures that reduce the expected
opportunity cost in §3.1, and procedures that improve the
probability of correct selection in §3.2. Both subsections
present two procedures. The first applies when there is no
budget constraint on the number of replications, and the
second applies when the budget is constrained.

Sequential extensions of the two-stage procedures are
presented in §3.3.



3.1. Two-Stage Procedures: Opportunity Cost

Procedure £ is a new two-stage procedure that reduces
the expected opportunity cost loss when the budget is not
constrained. The name ¥ (for linear loss) is used rather
than @€ (for opportunity cost) to avoid confusion with the
OCBA procedure, a different approach explored by Chen
(1996).

Procedure £ is similar to Procedures & and € in that
r, independent replications of each system are observed
during a first stage, a second stage further distinguishes
the performance of each system, and the system with the
highest overall sample mean is selected as best. The nov-
elty of Procedure £ is that the number of replications
is determined by balancing the cost of additional repli-
cations against the reduction in expected opportunity cost
obtained from second-stage output. Procedure £ is based
on the approximation of Theorem 1 that assumes small
replication costs, as occurs when the budget is essentially
unconstrained.

PROCEDURE ¥, FOR OPPORTUNITY COST (LINEAR LOSS)
AND UNCONSTRAINED BUDGET.

1. Specify the first-stage sample size r,.

2. Take independent replications x; i, ..., x;
system, i=1,...,k.

3. Compute the first-stage sample mean x; = Z;":, x; /T
and sample variance

52 = Z;(]:I(xi,j —-%)? .

P =

r» for each

ro_l

4. Determine the first-stage order statistics, Xp;; < -+ <
X)- Compute the precision A, , = r,/(35 + 67;) of
the difference W;;; — W, in unknown means, for
[i] # [«].

5. Estimate the cost per replication c¢; for each system,
based on the average run times during first stage sam-
pling (express in same units as simulation output).

6. Compute the number of additional replications (round
up if necessary),

ro— 1+ A (B — X))
— A2 1270 Ll U
iy = max {0’ K(U”(A"") (h=D-1

b0, G =51 / ZcM)'/Z] ~n).

for [i] # [k] and

Ny ro—1+A;  (x ~ X))’
r[k]=max{0,[((0&12(/\‘,,‘)‘/2 2 "1 [_"]1 (UL
i=1 (ro—)

¢r0—l[(Ai,k)l/2(i[k] —f[.'])]) /Zc[k]) 1/2] - "o}~

7. Take r; additional observations from system i, inde-
pendent of all other replications for all systems, for
i=1,...,k
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8. Compute the overall sample means X,= Y\ x, ;/
(r 0 +r, i)'

9. Select the system with the largest J=c,. as best.

The computing requirements for Procedures &, 6, and
Z<Z are comparable. All compute the sample mean and
variance of each system. Procedure £Z needs a few addi-
tional math operations per system, and the others require
the solution of Rinott’s integral.

The total number of replications of all three procedures
is quite sensitive to subjectively specified parameters (c for
Procedure £%; 6* and P* for Procedures & and %).
The number of replications is readily controlled, however,
with a budget constraint, ¢r” = b. Procedure LZ(B) is a
budget-costrained version of Procedure £& and is a con-
sequence of Corollary 1.

PROCEDURE ¥£(9%B), FOR OPPORTUNITY COST (LINEAR
Loss) wiTH BUDGET CONSTRAINT b.

1. Complete Steps 1-4 of Procedure L.

2. Estimate c¢; with the average CPU time per replication
for system i for i =1, ..., k; select b for the budget
constraint cr” = b for second-stage replications; and
initialize the set of systems considered for second-
stage replications, & = {1, ..., k}.

3. Compute a tentative number of additional replications
for each system [i] € &,

b+3 ey Toc;

= RNECE
c~c[i]tr-n~
e S22

where

(hy )

s ro—1)—

M = ¢r0—][(Ai,k)l/2(j[k] —x)]  for [i] # [k] -

i M for [i] = [k]

4. If all allocations r; are nonnegative, then continue
to Step 5. Otherwise, remedy the nonegativity con-
straint violation: (a) For each [i] € & such that rj; <0,
remove [i] from & and set r;; =0, (b) For each [i],
if [i] € & or [k] € & then reassign

r/(82%,+6%) i [il,[Kes
A= /62, if[i]¢ % [kl e P
10/ 6%, if[ile & [kl ¢ &,

and (c) return to Step 3.

5. Round the r; to an integer number of replications (see
the note after the procedure).

6. Take r; additional observations from system i, inde-
pendent of all other replications for all systems, for
i=1,...,k.

7. Compute the overall
Z;flri xi,j/(r0+ri)' _

8. Select the system with the largest x; as best.

sample means x,=
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The rounding in Step 5 may violate the constraint cr’ = b.
Budget overruns are not likely to be a concern if the amount
of rounding is small. If the budget is truly tight, a practical
approach for overruns is to solve for r again with a slightly
decreased budget.

The theorem and corollary that justify these procedures
rely on some additional notation. The state of uncertainty
after the first stage (Equations (2) and (3)) is denoted by
Bi =X = 1o, = (ry—1)/2, and B; = 67(r, — 1)/2.
Define [i] so that u; < -+ < py is nondecreasing. Ties
occur here with probability 0. Denote by A; ; the precision
of the difference in unknown means Wi —W, i

-1
,\,.,j=a(§‘_'1+§ﬂ) . (10)
OOV

Denote the expected value z; of the unknown mean of sys-
tem i, given X, by

def

.—E[Wlx]_x (11)
After the first stage but prior to observing X, , the unknown
overall output mean
Z,=E[W,|X,] (12)

has St(x;, ry(ry+r;)/(r.G?%), ry — 1) distribution (de Groot
1970). Denote by A; ; the predictive precision for the dif-
ference in unknown posterior means Z; — Z(;,

—1
_ "B 1BL
A iy =a . (13)
nay(ngg +r) g (ngy + )
Let ¢,(s) and ®,(s) be the density function and cumu-
lative distribution function of the standard Student-t ran-

dom variable with v degrees of freedom, and let ¥, (s) =
[F(x=5)0, (x)dx Bracken and Schleifer (1964) indicate

that ¥, (s) = ”*" ~¢,(s) —s(1 — ®,(s)). The theory below
presumes that the allocations r; are continuous.

THEOREM 1. Assume that the x;; are jointly indepen-
dent with N (w;, A;") distribution. Denote by { the joint
prior distribution of W, A, with A; ~ G(a, B;), Wi|,, ~
N(w;, A7 /n;) given A, and (W, A) independent for i =
1,. k Let the loss function be the opportunity cost of
Equanon 6, and let ¢, [i], A; ), and A; ; be as above. Then:

o The objective function p(r) of Equation 8 is bounded
below by

pie (1) = x4 Ey[maxw, — wy]

- Z ’\_.lzf}zq'za [Al/z (g — ) ) (14)

and the bound is tight when k = 2.

o If the c; are sufficiently small for all i, the ry that
minimize p* (r) are approximately
20+ Ay (ppyy — )
_—ZL(I'%A—‘%J()\LA»)W(#[H“I"v[i])])'/z

ZC[,](a/ﬁ[,-])
s (15)

((/\i‘k)l/z

i =

for [i] # [k], and

20+ A i (g — )
_2ka+]1[l—¢za[(&.k)l/z(ﬂ[k] - ,Uv[i])] ) 12

Zc[k](a/B[L])

o
" =

(Zf;] (Ai.k)'/z

—"n[k].
PRrOOF. See the appendix.

-1 2 272
When k :.2’ E{[rr?axj.wj—w[k]] =AY W, [A) / 2y —
#2)]- Excluding replication costs, the expected opportumty

cost of a pairwise comparison is therefore exactly

~1/2 2
Ay l/ qua[ 12(#«[1]—#[2])]— ll/z}q’za[)\ 122}(M[|] M[z])]

When k > 2, the simulation costs plus the expected losses
from k — 1 pairwise comparisons between the system with
the highest first-stage sample mean and each other system
is then

k—1
e’ + 3 AL W [N (g — )]

i=1
= A W[ A (g — i) - (16)

Because the Bonferroni inequality (e.g., see Law and
Kelton 1991) can be considered to be a sum of pairwise
losses (albeit for the 0-1 loss), the allocation that minimizes
Equation (14) also minimizes the Bonferroni-like approxi-
mation of Equation (16).

The following corollary justifies the second-stage allo-
cations for Procedure ¥<(%). This asymptotic result pre-
sumes that b is large relative to the c;.

COROLLARY 1. The solution to minp’ (r) subject to
cr” = b for asymptotically large b is

~x b+Z/—l i

r[i]'b = Zk (CJC[]BJWJ)I/Z - n[i]’ (17)
j By

where

172 2a+Ai 4 (g IL[,])
(A ) 2a—1

¢’2a[(/\i,k) /z(ﬂ[k]—#[i])] for [i} # [k] - (18)
Y Ml for [i] =[]

M =

PRrROOF. See the appendix.

When b is small, some of the allocations of
Equation (17) may violate the nonnegativity constraint for
replications. Suppose that one or more 7} , <0, and let
F =A{[{]| F[, » > 0}. To comply with the nonnegativity con-
straint, set 7, , = 0 for all [j] € &. But this change vio-
lates the budget constraint, sO ;e 7,1, Must decrease.
Further, the precision Ay; , of the difference Zj; — Z, is
no longer well approximated by A, ,, but by

Ak if 7} »» Tiy.» are both large,
Miay ™ anp /By
an[i]/B[i]

if 7, =0 and 77}, , is large, (19)
if 7 , is large and 73, , =0.



We therefore replace A; , in Equation (18) with the appro-
priate approximation for A ;, from Equation (19) when
recalculating 77, , for [i] € &, using [i] € & as a criterion
for indicating if r}, , is large. An approximataion for A;
is not needed when [i], [k] € .

Procedure ££(%) implements this process iteratively
until the nonnegativity constraint is guaranteed. At most
k — 1 recalculations are needed, as || is decreased by at
least one for each added iteration. The worst-case computa-
tional complexity is therefore O(k?) for small 4. For suffi-
ciently large b, the worst-case complexity is O(k) because
all systems have nonnegative allocations on the first pass.

3.2. Two-Stage Procedures: 0-1 Loss

The two-stage procedures presented in §3.1 reduce the
expected opportunity cost of a selection. This section
presents analogous procedures that reduce the expected 0-1
loss, or equivalently the probability of incorrect selection.
Procedure 0-1, the 0-1 loss function analog of Procedure
¥, is identical to Procedure £, except that Step 6
becomes
6’. Compute the number of additional replications,

i = max [0’ {(&{%](Ai.k)3/2(i{k] = Xpp) -
b1 [(A )" (X — J_C[i])]/zcm) l/z—l —np I )

for [i] # [k], and
k—1

rig = max {0, [(Z G (i o)™ (B — ¥i)
i=1

1/2
b 1[N )" (K —X[;])]/%[k]) —I - ”{kl}'

Procedure 0-1 differs from Procedure % mainly because
an approximation to the expected posterior probability of
correct selection, rather than the LFC, drives the allo-
cation of second-stage replications. Theorem 2 justifies
Procedure 0-1.

THEOREM 2. Asume that the x;; are jointly indepen-
dent with N(w;, A;") distribution. Denote by { the joint
prior distribution of W,A, with A; ~ G(a, B;), Wi, ~
N(wi, A7 /n;) given A, and (W;, A;) independent for
i=1,...,k Let the loss function be the 0-1 loss of
Equation (5), and let ¢,[i], A; ;, and Ay ;, be as above.
Then:

o The objective function p(r) of Equation (8) is
bounded below by

7

por=cr’ +E; [mj‘.‘x w;= w[kl]

k—1

=3 B [N (g — )] (20)

i=1
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e For sufficiently small c; for all i, the ry; that minimize
p;_, (r) are approximately

P ( ()\f, k)3/2 (M[k] - M[i])¢2a[()\i, k)l/2 (,U«{k] - l’«[i])] ) 2
[ 2C[i](a/B[i])
N (21)
for [i] # [k], and
o (Zz]::l ) (mpy _:U’[i])¢2a[(Ai,k)l/2(M[k] =] ) 2
. 2¢y(a/Byy)
=Ry (22)

PRrROOF. See the appendix.

Unlike the bound in Equation (14), the bound in
Equation (20) is not tight for k = 2 because of an approx-
imation in the proof. The bound becomes tighter as the r;
increase.

Selecting the system with the highest sample mean does
not necessarily maximize the probability of correct selec-
tion (e.g., see Gupta and Miescke 1994). However, this
selection rule has intuitive appeal and is used implicitly
by indifference-zone procedures, and we conjecture that
our procedures tend to avoid situations where the rule is
suboptimal.

Procedure 0-1(9), a budget-constrained version of
Procedure 0-1, is obtained by modifying Step 3 of
Procedure ££(%) to account for the 0-1 loss function.

3’. Compute a tentative number of additional replications
for each system [i] € &,

I b+3 e 1oc; P
[ — R 12 " To
3 <97
jeF ‘7'[2,-]7[;]
where
(A )Y Gy — XD
Y= ¢r0—l[()‘i,k)l/2(i[k] - X[i])] for [i] # [k]
DR for [] = [k]

This allocation is a consequence of Corollary 2.

COROLLARY 2. The solution to minp]_,(r) = p,_,(r) +cr
subject to ex” = b for asymptotically large b is

. b+Z:'7=1 cn;
e = - . - jl/2 M
o By
i ( ]ﬁ[i17(’i11>
where
(A, k)3/2 (/‘L[k] - I—L[i])
Vi) = X Go[(Ap )" 2 (g — k)] Sfor [i] # [K]
PR for [i] = [k]

PrOOF. The proof of this parallels that for Corollary 1,
except that v, replaces n;. O
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3.3. Sequential Procedures

Chen (1996) and Bechhofer et al. (1995) describe sequen-
tial procedures that improve sampling efficiency based on
different assumptions than the decision theoretic approach
here. Sequential procedures allow a modeler to run a cer-
tain number of replications, observe the output, and repeat
until a suitable stopping condition is achieved. A potential
advantage of sequential procedures is that sampling effi-
ciency may be improved at each stage by incorporating
information from all earlier stages. A second advantage is
that the stopping rule might be used to provide a Bayesian
PCS guarantee. Additional stages can be run until a pre-
specified posterior PCS can be claimed.

To develop sequential variations on our new procedures,
a technical issue requires attention. Because the number of
replications r, ; seen so far for each system may differ, the
shape parameter a; = (r, ; — 1)/2 for the unknown preci-
sion may differ as well. The results in §§3.1 and 3.2 require
a common shape parameter a. The problem with different
a; is that the differences Wj;; — Wy;; and Z; — Z;; do not
have three parameter Student-t distributions because of a
mismatch in the degrees of freedom.

One approach to this problem is to approximate the
distributions of these differences. A sequential procedure,
Procedure £Z£(¥), is obtained with the following mod-
ifications to Procedure ££(9%). The changes incorporate
the standard Welch approximation for the difference of two
Student-t random variables with different degrees of free-
dom (e.g., see Law and Kelton 1991).

e Allow for Steps 2-7 to be repeated until a user-
specified condition is met (e.g., allocate T at each stage
until a total budget of b > 7 is exhausted).

e Calculate u; = X, a; = (ry; — 1)/2,B; = 67(rp,; —
1)/2,n; =r, ;, based on all r, ; replications seen so far.

e In Step 4, the precision parameter A; , becomes
T if[i],[k]e &,

if [i(lg &5 [k]les, (23)
if [ile#;[k] € F.

(&ﬁ]/ro,[i]+5'[2k]/ro,[k])
Aig= "o,[k]/‘f[i]
ro.1a/ 9
e Replace all occurences of ry — 1 with the Welch
approximation for the degrees of freedom, vy, (,;, where

2
62 [ ro 11462, [ 7
( [,]/ 0,[i] + [k]/ O.Ik]) if [i],[k] e

52 \2 2. \2 ’ o
Vi = (W%) /"“-“]_'”(76%) /(""["'_l) 24)
' if [i]g &;[kle,
if [i(JeF;[k]lg S

Toup— 1

To—1

* Replace all other occurences of 7, with 7, ;.
Similar changes to Procedure 0-1(9) result in the sequen-
tial Procedure 0-1(%).

4. AN EMPIRICAL COMPARISON OF
THE PROCEDURES

This section presents some results from a small empiri-
cal study that assess the effectiveness of the procedures

described above to identify the best system. Each
procedure’s effectiveness is evaluated with respect to four
performance measures described in §4.1. The selection
problems in §4.2 are artificially designed to provide some
indication of the ability of Procedures €, ¥£¥(%) and
0-1(9) to allocate replications to competitive systems and
avoid simulating non-competitive systems. Section 4.3 uses
a less artificial selection problem to analyze the perfor-
mance of Procedures R, €, ££(%B) and 0-1(%), as a func-
tion of the total second-stage sampling. We use ¢; = 1
to constrain the total number of replications for our new
procedures. A thorough exploration of the potential bene-
fits of allowing differing costs is beyond the scope of this

paper.

4.1. Performance Measures for the Procedures

The effectiveness of each procedure is measured with
respect to four performance measures, each of which is rel-
evant to the justification of at least one of the procedures.

The first performance measure to evaluate the procedures
is the PCS, estimated as the empirical fraction of correct
selections (EFCS) of the best system. The derivations of
Procedures € and R both provide PCS guarantees.

The second performance measure to evaluate the
procedures is the empirical fraction of selections that are
within 0* of the best system. Nelson and Matejcik (1995)
show that many indifference-zone procedures, including
Procedure &, select a system within 6* of the best for all
configurations of the means.

The third performance measure is the expected value of
the Bonferroni bound on the probability of correct selection
(EBPCS), given the output obtained from an application of
a selection procedure. By design, Procedure 0-1(%) allo-
cates replications to asymptotically maximize EBPCS. The
Bonferroni bound for the probability of correct selection
(BPCS) is estimated at the end of the procedure, when the
system d”(x,) with the largest overall sample mean de(,‘ )
is selected. Let )t .d¥(x,) and vy g~ ) be the approximate
precision and degrees of freedom for Wy; — Wy ) using
the Welch approximation, based on all output. The BPCS
is then

max[O - Y o, - dN(x)[)tll/dN(,‘r)(x[, —xd~(x,))” (25)

[i]#d™ (x,)

(Reverse signs, J?dN(,‘r) ——f[i], for a minimization problem.)
The Welch approximation is used even when the degrees
of freedom match for numerical stability. Inoue and Chick
(1998) further discuss the relationship between P-values
and the BPCS.

The fourth performance measure is the expected value
of the Bonferroni-like bound on opportunity cost (EBOC),
the opportunity cost analog of Equation (25),

3-1/2 -
2 A v Yo av o [ vy G —Eave) ]
(i1 (x,)

By design, Procedure £%(%) allocates replications to
asymptotically minimize EBOC.



4.2. A Stylized Selection Problem

Stylized selection problems can provide insight into the
performance of selection procedures in controlled envi-
ronments. Here we use the monotone decreasing means
(MDM) configuration, which evenly spaces the means of
each system,

w,=w, —({—-1){6", fori=2,...,k,

for some {. The extensive study of Nelson et al. (1999)
indicates that Procedures € requires a smaller number of
replications than Procedures & in the MDM configuration
when the number of systems is large (k > 10 in one experi-
ment). Because Procedures & and € are already compared
elsewhere, this section focuses on the ability of Procedures
B, LL(%B) and 0-1(9B) to effectively allocate replications
to identify the best system, as a function of the number of
systems (k =2, 5, 10, 100).

The procedures are compared by running a common
first stage. The total second-stage allocation of each
procedure is made the same by letting the total num-
ber of second-stage replications b for Procedures L% (%)
and 0-1(%) be the same as the total second-stage allo-
cation of Procedure 6. Independent replications are then
run for the second stage of each procedure, and the sys-
tem selected to be best by each procedure is recorded.
This process tests whether the new procedures can more
effectively allocate the number of replications suggested
by Procedure 6. Three thousand macroreplications are
run so that the error for estimating a probability of cor-
rect selection of 0.95 gives two-decimal-place accuracy
(/0.95 x (1—0.95)/3000 ~ 0.004).

We initially set { =1/2,r, =10, P*=0.95,6*=1/,/7,
and a',.2 =4 fori=1,...,k. System 1 therefore performs
best, and System 2 performs within 6* of the best. Table 1
presents the average number of second-stage replications

Table 1.
experiment of §4.2.
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(ANR) per system for each procedure, as well as the per-
formance measures.

Procedures ££(%B) and 0-1(%B) perform at least as well
as Procedure € for all 4 performance measures, for each
of k =2,5,10, and 100. More than half the comparisons
indicate a statistically significant difference (95% confi-
dence with a paired ¢ test), but several comparisons are
within error bounds. Procedure £ (%) also performs at
least as well as Procedure 0-1(9), or within error bounds,
for all performance measures and values of k tested.
Procedures ££(%) and 0-1(%) outperform Procedure €
for EBPCS and EBOC for each k tested, and outperform
Procedure € for the empirical fraction of correct selec-
tions (EFCS) of the best system for larger numbers of
systems (k = 10, 100). The use of additional first-stage
information therefore improves the second-stage allocations
in this experiment. Procedures ££(%), 0-1(%), and €
perform more similarly on this experiment when measured
by the empirical fraction of selections within &* of the
best. For this MDM experiment, then, the new Bayesian
procedures more frequently identify the true best system,
particularly when the number of systems is large, but when
Procedure € does not identify the best system, it often
identifies a very good system.

Somewhat surprisingly, Procedure 0-1(%) does not per-
form best with respect to EBPCS, a measure that the
procedure was designed to improve. This is because
the derivation of Procedure 0-1(%) requires one more
asymptotic approximation that the derivation of Procedure
LL(RB). Procedure L£(B) is designed to improve EBOC,
and the procedure performs best with respect to this mea-
sure. Further, its performance improves relative to the other
procedures as the number of systems increases. In this
experiment, then, the Bonferroni-like bound and asymptotic

Performance of Procedures €, 0-1(%), and L% (%) for the monotone decreasing means (MDM)

Number of Systems, k

Figure of Merit Procedure 2 5 10 100
ANR Procedures €, 0-1(B), ££(AB) 738 3,429 8,784 42,862
Empirical fraction of Procedure € 0.8363 0.9140 0.9323 0.9763
correct selections Procedure 0-1(%) 0.8527* 0.9117 0.9480* 0.9937*
(EFCS) Procedure L<(%B) 0.8500 0.9293* 0.9660* 0.9987*
Empirical fraction of Procedure 6 1.0000 0.9943 0.9990 1.0000
selections within 6* Procedure 0-1(2) 1.0000 0.9953 0.9977 0.9997
of the best Procedure L£(%B) 1.0000 0.9953 0.9993 1.0000
Expected Bonferroni Procedure € 0.8336 0.8379 0.8649 0.9318
bound on PCS Procedure 0-1(%) 0.8446* 0.8339 0.8821* 0.9717*
(EBPCS) Procedure LZ£(%B) 0.8470* 0.8462* 0.9022* 0.9842*
Expected Bonferroni Procedure 6 0.0176 0.0138 0.0104 0.0037
bound on opportunity Procedure 0-1(2) 0.0157* 0.0128* 0.0075* 0.0012*
cost (EBOC) Procedure LZ(%) 0.0154* 0.0110* 0.0055* 0.0005*

The symbol * indicates a statistically significant difference in performance when compared with Procedure €.
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approximation used in the derivation of Procedure L& (%)
do not appear to deleteriously affect its performance.

We repeated the experiment with small modifications to
the parameters (P* =0.90 and o7 =1 for i=1,...,k)
and obtained the same qualitative results (data not shown).
This study did not investigate the relative performance of
the procedures when the variance for each system differs.

4.3. An Inventory Policy Selection Problem

We also consider the performance of the selection
procedures with respect to a problem that has less structure
to the configuration of the means and variances of each sys-
tem. The systems considered are the five (s, S) inventory
policies introduced by Koenig and Law (1985) and ana-
lyzed later by Nelson and Matejcik (1995). The best sys-
tem is the policy that has the minimum expected cost per
period, evaluated over 60 periods.

In this experiment we use a somewhat different com-
parison mechanism to evaluate the performance of the
procedures as a function of the total second-stage bud-
get. We constrain the total number of replications after
the first stage, rather than letting Procedure ‘6 determine
the second-stage allocations for Procedures £<£(%) and
0-1(9). For Procedures R and €, this means changing
the proportionality constant for the number of second-stage
replications for each system to obtain a specified total
number of replications. Let Procedures (%) and €(%)
denote budget constrained version of these indifference-
zone procedures. Although no PCS guarantee is claimed,
replications are still allocated proportional to the first-stage
sample variance.

Suppose that for a specific first-stage, r, = 5,X =
(122.9,121.4,126.0, 132.4, 145.9) and the sample vari-
ances are (13.7, 4.0, 11.4, 6.6, 4.9). If the second-stage
budget is constrained to b = 30, Procedure (%) allo-
cates r = (14,0, 10, 4, 2); Procedure €(%) screens out
Systems 4 and 5 (6* = 1) and allocates r = (16, 1, 13, 0, 0);
Procedure 0-1(%) allocates r = (15,8,7,0,0); and
Procedure ££(%) allocates r = (16, 8, 6,0, 0). The new
procedures allocate r, = rs = 0, because more replications
for Systems 4 and 5 are unlikely to appreciably change
the posterior probability that either is best. They might be
selected, however, if the additional replications for the other
systems indicate that Systems 4 or 5 have the best overall
sample mean after both stages are completed. On the other
hand, once Procedure € screens out a system, that system
may no longer be selected as best.

We estimate the average performance of each two-stage
procedure by running 3000 independent macroreplications
of first (r =5) and second stages. Each procedure is then
compared with respect to EPCS, EBPCS and EBOC, as a
function of the total number of second-stage replications.

We tested several variations of Procedure €(%), cor-
responding to different levels of 6* on the interval [0,1].
Once the total number of second-stage replications is fixed
for €(A), the effect of 6* is to change the number of sys-
tems screened out. A smaller §* corresponds to a smaller

Figure 1.  Empirical fraction of correct selections
(EFCS) as a function of the total number b

of second-stage replications.
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number of screened systems. Although Procedure € can-
not be run with 6* = 0 because a division by 6* is required,
Procedure €(%) can be run with 6* = 0, because second-
stage replications are allocated proportional to the sample
variance of unscreened systems so that a budget constraint
is satisfied. Nelson et al. (1999) remark that when 6* =0,
the screening in Procedure 6(%) is a generalization of the
subset selection procedure of Gupta (1965). Screening with
0* = 0 results in a better empirical performance than with
6* =1 for this experiment, so we present results for 6* = 0.

The EFCS is displayed as a function of the number
of additional replications in Figure 1. (System 2 is con-
sidered “best” based on many thousands of replications).
Procedure ‘€(%) outperforms Procedure R(%) for EFCS
because it does not allocate replications to screened sys-
tems that are apparently inferior. Both are outperformed by
Procedures ££(%) and 0-1(%). To reach the same EFCS
obtained from b = 200 replications for Procedure %(%),
Procedure 2% (%) requires 110 replications and Procedure
©(RB) requires 160 replications. The better performance of
the new procedures can be attributed to their inclusion of
additional first-stage information when allocating second-
stage replications.

Figure 2 indicates that the procedures have approxi-
mately the same relative ranking for EBPCS as observed
above for EFCS. The one difference is that Procedure
€(%B) outperforms Procedure 0-1(%), when the number of
second-stage replications is small. The asymptotic approx-
imations in the derivation of Procedure 0-1(9) apparently
therefore have a negative effect when the total budget is
particularly small.

Procedure (%) achieves an EBPCS of 0.9714 with
b =200 replications during the second stage. Procedures
LZL(B) and 0-1(B), on the other hand, require approx-
imately b = 125 and b = 145, respectively, to obtain the
same EBPCS. This means that the new preocedures tend



Figure 2.  Expected Bonferroni bound for the probabil-
ity of correct selection (EBPCS) as a func-
tion of the total number b of second-stage
replications.
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Figure 3.  Expected Bonferroni bound for opportunity

cost (EBOC) as a function of the total num-
ber b of second-stage replications.
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to provide more evidence for correct selection, on the basis
of the simulation output observed at the completion of the
procedure, than the indifference-zone procedures.

Figure 3 indicates that Procedures 0-1(%) and ¥€(%)
perform similarly with respect to EBOC. Procedure
LL(B) is designed to reduce EBOC, so there is no sur-
prise that it performs best. Procedure R (%) performs worst
because it ignores the most first-stage information.

Changing the systems slightly by doubling the number
of simulated months per replication does not modify the
qualitative nature of the results displayed in the figures.

Sequential allocation provides a distinct advantage for
this problem. If Procedure 0-1(%) is used with 7 =5 repli-
cations allocated per stage until a total of b = 100 replica-
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tions are observed, the EBPCS is 0.9748, an increase from
0.9486 from the two-stage Procedure 0-1(%). Sequential
allocation also improves EFCS and EBOC.

The CPU time required to compute the second-stage
allocation is not included in the sampling budget con-
straint, but may influence the computational efficiency of
the procedures if the cost of computing the allocation is
nontrivial relative to the sampling budget b. Here the aver-
age CPU time per allocation computation for Procedure
R(AB) is 0.0020 second, compared with 0.018 second for
Procedure 0-1(%). Procedure R(%B) (b = 100) results in
an EBPCS of 0.925, and requires 15.1 seconds on average
(CPU time for allocation plus 100 replications). Procedure
0-1(%) (b = 50 replications allocated T =5 at a time)
results in an EBPCS of 0.926, and requires 9.39 seconds
on average. Procedure 0-1(<) therefore needs 9.39/15.1 ~
0.62 as much effort as Procedure % (%) to provide the same
EBPCS. The allocations of the new procedures require
more time than for the indifference-zone procedures. The
penalty for the increased computation time for the new
procedures is more than offset by the improved efficiency
for identifying the best system in this example. In general,
the benefit increases as simulation run times become longer.

5. DISCUSSION

Many two-stage indifference-zone procedures ignore a
fair amount of first-stage sampling information. Because
Procedure € can screen after the first stage, it incorpo-
rates much more first-stage information than Procedure A.
Procedure 6 therefore outperforms Procedure % when sev-
eral systems are screened out (Nelson et al. 1999).

Procedures £<(%) and 0-1(%) both use more first stage
information than Procedures 2 and 6. The new procedures
are justified by (i) deriving a Bonferroni-like approxima-
tion for the total expected loss, (ii) determining an allo-
cation that asymptotically minimizes that approximation
as the cost of replications gets arbitrarily small, and (iii)
establishing budget-constrained allocations that are asymp-
totically optimal as the budget gets large. The asymptotic
and Bonferroni-like approximations cause the procedures
to be suboptimal. However, the improved use of first-stage
information when allocating additional replications seems
to outweigh the deleterious effect of the approximations,
even when the number of systems is & = 100.

Procedure £< (%) seems to perform best among the four
procedures considered here, for both the MDM experiments
and the inventory selection problem, with respect to four
measures of effectiveness. Additional experiments (data not
shown) indicate that modifying 7, does not change this
ranking. Procedure 0-1(9) also shows significant improve-
ments over Procedure %, but the performance improvement
is less impressive than for Procedure ££(%). The extra
asymptotic approximation in the derivation of Procedure
0-1(®) is the likely culprit for the performance degrada-
tion. An open question is whether other bounds for the
expected loss result in more efficient procedures.
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In this paper we did not consider common random num-
bers, an important efficiency improvement technique for
distinguishing the performance of systems. This presents
an avenue for further research.

6. CONCLUSIONS

The new procedures presented here provide flexibility that
was previously unavailable to a decision-maker that uses
simulation to select the best system. Whereas indifference-
zone procedures are concerned with the probability of cor-
rect selection, we allow for a decision-maker to improve the
probability of correct selection or the expected opportunity
cost associated with a potentially incorrect decision. A bud-
get constraint on the number of replications arises naturally
in practice, and is readily incorporated into the decision-
theoretic framework. Although our budget-constrained ver-
sions of the indifference-zone procedures are not great
leaps, budget constraints are not found in standard treat-
ments of indifference-zone procedures.

Our central tenet is that computer replications should be
allocated so that the expected value of information from
the experiments is maximized. To accomplish this, our
procedures incorporate more first-stage information about
sample means than indifference-zone procedures. Although
the procedures are based on suboptimal asymptotic approx-
imations, the deleterious effect of the approximations seems
to be outweighed by the use of additional first-stage infor-
mation. Empirical results indicate that Procedure £<(%)
seems to be a particularly effective two-stage procedure.
The performance of these new procedures for a broader
range of selection problems warrants further investigation.

APPENDIX

PrOOF OF THEOREM 1 (OpPORTUNITY CosT). We first
determine the expected total loss p(r). Consider the modi-
fied loss function:

Zoe (i) W) = Z, . ([i], W) — £, . ([K], W) = wyy — wyy.

It is well known that adding —<,__ ([k], w) to the loss
function does not change the optimal decision (e.g.,
see de Groot 1970). Thus E[<Z; . ([i], w) | X] = zpy — zpaps
the difference of the posterior means. Further, [i] is
selected only if the event ;) = {z: z; = max;z;}
occurs. Take the expectation over second-stage outcomes
X,, add in E,[<£,, ([k], w)], to compensate for subtract-
ing —<%, . ([k],w) earlier, and add the cost cr” of the
experiment to obtain p(r) = er” + E,[max; w; — wy,] —
Yict Pa(st)E[Zyy — Zyyy | gy

Now consider the loss for a pairwise comparison
between systems [i] and [k]. Then

when Z[k] < Z[i],

E[Z;. (i, w) | x] < [ 6 4 (26)

0 otherwise,

for each x, [i] # [k]. Because Z;) — Z;; has a Student-t dis-
tribution (Equation (12)), a result of Bracken and Schleifer

(1964) implies that the expected value of this pairwise
loss is

~12 12
Ay \I,Zt![/\{i,k]('u‘[i] - 'U“(kl)]'

Define B, = {z | z; > zj)} so that s¢; C %B;, and let x, (-)
be the indicator function. The lower bound Equation (14)
is obtained by noting:

k—1 k—1

sz(&«[i])E[z[i] —zy |ty = ;E[Xsd; (Z)(Zy—Zy))

i=l
k—1

< ElXa, (D) (Zy~Zy)]

i=1
k=1
= P BWE[Zy—Zyy | By

i=1

k-1

-2 172

= ;T{i.kl Y[7 o (g — ) |-
=

To minimize p? . (r), consider r; to be continuous and
take partial derivatives. Noting that 3P, (s)/ds = ®,(s) — 1
leads to optimality conditions

2a+Ay;, —ui)?
(A{i‘k})l/zfj(—go(ﬁ—‘f&'(bZa[()‘{i,k})l/z(l“[i] - f‘l‘[k])]
2(ng +1)*(a/By) ’

‘m=

for [i] # [k], and

_ 2a+ i (g =40 _
* 1(/\[,;1())1/2 (kz)a’i[;] [ ¢2a[(/\{i,k})l/2(#«(i] M[k])]

Cry =
e 2(npg+rg)*(@/Byy)

In the limit ¢; — O for all i, we have large r;, and A; ,, —
A; - Substitute A; , for Ay ,, in the optimality conditions
to obtain the stated number of replications. [J

PROOF OF COROLLARY 1. Let 6 be a Lagrange multiplier
OLLAX a -agrange multipie
for the constraint cr’ = b. Take derivatives to obtain opti-
mality conditions
24y g (- !,-])2
(A(i,k))vz hia kz);:llk = ¢Zu[(A(i.k))l/2(M‘[i]_M‘[k])]

Ociy +
g 2(ngy + rap*(a/Bry)

=O,

for [i] # [k], and

2ak g ) (4 l_“il)z _
! )‘(',k))'/z Hz) e ¢2a[(A(i,k))l/2(F’[i] ﬂ[k])]_

(
Oc;, + ! ol
. E 2(ngy + rig)*(a/Byy)

0.

When b is large, the number of replications of each system
is large, so that A,y — A;, Let ny, be as in Equation
(18), substitute the limiting value A, , for A; ;, and replace
r; with 7* to indicate that an asymptotic approximation is
being made, to obtain

i

— =0.
2(mgy + 7> (@/By)

Oey +



As a consequence, 7{;) is therefore related to 7 by

=% \2
vy +700)" _ B/
(M + ) Bama/ <

Recall that er” = b and solve for ;) to obtain the desired
allocation. O

PROOF OF THEOREM 2 (0-1 loss). The proof parallels that
of Theorem 1, except that an extra approximation is made
for the expected loss. Consider the pairwise loss between
systems [i] and [k] in order to develop a bound on p(r).
Add —<,_,([k], w) to the loss function to obtain

Zo-1([i], W) = Zo_1 ([i], W) — Lo ([k], W)
0  if [{] = [k] or neither [i] nor [k]
is best,
—1 if [{] # [k] and [{] is best,
1 if [{] # [k] and [k] is best,

E[%Z5_,([kDIx] =0,
E[Z;_, ([IDIx] = p(wy, best |x) — p(wy; best |x) > —1.

This expected pairwise loss is incurred whenever system [i]
has a larger overall sample mean than system [k], and this
occurs with probability ®[7; ,,"*(ky — s As 71y, 1y
grow without bound, E[Z_ ([i])|x, system [i] is best]
— —1 almost surely (correct selection is assured by the
perfect information obtained from an infinite number of
replications). In numerical tests, this limit was typically
approached rather quickly.

The lower bound of Equation (20) is obtained by adding
the expected pairwise losses, approximating E[<{_, ([i])[x,
;] by —1 for each pairwise comparison, then adding
the simulation costs and E,[Z,_,([k], w)]. Differentiate the
lower bound and approximate A as in the proof of
Theorem 1 to obtain the stated number of replications. [
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