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Standard "indifference-zone" procedures that allocate computer resources to infer the best of a finite set of simulated systems are designed 
with a statistically conservative, least favorable configuration assumption consider the probability of correct selection (but not the oppor- 
tunity cost) and assume that the cost of simulating each system is the same. Recent Bayesian work considers opportunity cost and shows 
that an average case analysis may be less conservative but assumes a known output variance, an assumption that typically is violated in 
simulation. This paper presents new two-stage and sequential selection procedures that integrate attractive features of both lines of research. 
They are derived assuming that the simulation output is normally distributed with unknown mean and variance that may differ for each 
system. We permit the reduction of either opportunity cost loss or the probability of incorrect selection and allow for different replication 
costs for each system. The generality of our formulation comes at the expense of difficulty in obtaining exact closed-form solutions. 
We therefore derive a bound for the expected loss associated potentially incorrect selections, then asymptotically minimize that bound. 
Theoretical and empirical results indicate that our approach compares favorably with indifference-zone procedures. 

An important use of stochastic simulation is the iden- 
tification of the best of several alternative systems, 

where "best" is defined in terms of the maximum (or min- 
imum) mean value of simulation output (Law and Kelton 
1991, Banks et al. 1996). There is therefore interest in 
statistical selection procedures to identify the best sys- 
tem (Matejcik and Nelson 1995, Bechhofer et al. 1995, 
Goldsman and Nelson 1998). Typically, a few simulation 
replications for each system are run in a preliminary stage, 
and the decision-maker measures the evidence that a given 
system is best. If the evidence is insufficient, additional 
replications are run to obtain more information about the 
identity of the best system. 

Well-known indifference-zone procedures determine the 
number of additional replications based on a statistically 
conservative, least favorable configuration (LFC) assump- 
tion (Rinott 1978, Bechhofer et al. 1995). Some Bayesian 
approaches to the problem of selecting the best system 
(Chen 1996; Gupta and Miescke 1994, 1996) incorpo- 
rate first-stage sample mean information that is ignored by 
indifference-zone procedures. They suggest that an aver- 
age case analysis may lead to a significant reduction in 
computing effort, relative to indifference-zone procedures. 
However, these Bayesian formulations formally assume a 
known output variance, an assumption that is likely to be 
violated in simulation practice. 

This paper derives new two-stage and sequential selec- 
tion procedures that integrate attractive features of both 
lines of research, and it provides additional flexibility to 
address practical concerns. First, the new procedures are 
derived with a Bayesian, average case analysis to avoid 

the statistically conservative LFC assumption. Second, 
we assume that the variance for each system may be 
different and unknown, a feature of some indifference- 
zone procedures that is not formally afforded by previ- 
ous Bayesian developments. Further, we allow the analyst 
either to increase the probability of correct selection or to 
reduce the expected opportunity cost of potentially incor- 
rect selections. Indifference-zone procedures consider only 
the probability of correct selection. Finally, we allow for 
a computing budget constraint and permit the cost of each 
system's simulations to be different. None of the work men- 
tioned above explicitly accounts for differing simulation 
costs. 

Medicine and agriculture also employ statistical 
procedures to select the best system. ("Which population 
has the highest average blood cholesterol?," "Which crop 
treatment improves harvest the most?") This paper applies 
to those fields as well, although the relevant terminology 
differs (replace "replication" with "sample," and "system" 
with "treatment"). 

In ?1 we recall two indifference-zone procedures (Rinott 
1978, Goldsman and Nelson 1998) that serve as references 
for comparison. We motivate our general Bayesian formu- 
lation and explain how it differs from the indifference-zone 
approach in ?2. Closed-form solutions of certain special 
cases (e.g., known variance, common sampling costs, allo- 
cation of a single sample) are known (Gupta and Miescke 
1994, 1996; Berger 1988), but a closed-form solution to the 
general problem is unknown at present. Here we develop 
suboptimal allocations of additional replications for the 
general problem by asymptotically minimizing a bound on 
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the expected loss (cost of replications plus expected loss 
for potentially selecting an inferior system). New two-stage 
procedures that reduce the expected opportunity cost and 
the probability of incorrect selection are presented and jus- 
tified in ?3.1 and ?3.2, respectively. We provide sequen- 
tial analogs of those procedures in ?3.3, in an attempt to 
provide further sampling efficiencies. The new procedures 
compare favorably with indifference-zone procedures in an 
empirical study in ?4. 

1. BACKGROUND 

The indifference-zone formulation has strongly influenced 
the design of procedures for identifying the best of k 
systems. The idea is to identify the best system with a 
guaranteed lower bound P* on the probability of correct 
selection (PCS), given the assumption that the best is better 
than the other systems by at least 8*, the smallest differ- 
ence worth detecting in the opinion of a decision-maker. 
Indifference-zone procedures are statistically conservative 
because second-stage replications are allocated to guaran- 
tee the probability of correct selection when the unknown 
means are in the LFC. 

To benchmark the new procedures in ?3, we present two 
indifference-zone procedures that provide PCS guarantees 
when the simulation output is normally distributed. 

Rinott (1978) proposes a well-known two-stage pro- 
cedure that we call Procedure R. First, 8*, P*, and the 
first-stage sample size r0 are specified. Independent repli- 
cations xi, ,.... , i, r are run for each system, i = 1, ... k, 
and the first-stage sample mean xi = Ejl xi j/r and sam- 
ple variance jf2 = Ejrl(xi, -Xi)2/(r - 1) are computed. 
The number of second-stage replications r = (r,,..., rk) 
depends on 6*, a?2, r0, and the solution g = g(k, P*, r - 1) 
to Rinott's integral (e.g., see Bechhofer et al. 1995), 

i=max( , ( ) 2 _ rO}' (1) 

After the second stage, the system with the highest overall 
sample mean is selected as best. 

The total number of replications ro + ri per system is 

proportional to O2 if r0 is small, regardless of the first- 
stage sample mean. Simulating systems with clearly infe- 
rior first-stage sample means may be unnecessary. This 
motivates the combined screening and selection procedure 
of Goldsman and Nelson (1998), called Procedure 6 here, 
which attempts to improve sampling efficiency by paring 
out noncompetitive systems using a subset selection tech- 

nique. Nelson et al. (1999) present empirical evidence that 
Procedure c outperforms Procedure 9 over a range of set- 
tings. 

PROCEDURE %, A COMBINED SCREENING AND 

SELECTION PROCEDURE. 

1. Specify the indifference-zone parameter 6*, probabil- 
ity of correct selection guarantee P* = 1 - a, and first- 
stage sample size r0 > 2. Set t = tl-(i-a/2)l/(k-l),ro-_ 
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and let g/2 
= g(k, 1 - a/2, r - 1) solve Rinott's 

integral. 
2. Take independent replications xi, ,... , x, r for each 

system, i = 1,..., k. 
3. For each system, compute the first-stage sample 

mean xi = Ei=Xi, j/rO and sample variance /2 = 

Er (Xi, j - Xi)2/(ro- 1). 
4. Calculate the quantity wij = t((&2 + i2)/ro)'12 for all 

i # j. Form the screening subset I, containing each 
system i such that 

xi > X - ()ij - 8*)+ for all j : i. 

5. If I contains a single index, then stop and return that 
system as the best. Otherwise, for all i E I, compute 
the second-stage sample sizes 

ri = max{O, [(ga/2/*)221 - r0}. 

6. Take ri additional observations from all systems i E I, 
independent of all other replications for all systems. 

7. Estimate the means with the overall sample means 
^=E; o+,ro+ri 
Xi= Ej= Xi j/(rO + ri). 

8. Select the system with the largest xi as best. 

2. AN ALTERNATE FORMULATION 

While Procedure % improves on Procedure 9a by incor- 
porating some first-stage sample information about the 
unknown mean performance of each system, it does not 

incorporate all such information. The Bayesian decision- 
theoretic formulation presented here attempts to improve 
second-stage sampling efficiency by incorporating addi- 
tional first-stage information into the allocation decision. 
We also describe useful flexibility that the Bayesian 
approach offers that indifference-zone approach has not yet 
offered. 

Assume that the simulation output xi,j for system i is 
normally distributed with an unknown mean wi and vari- 
ance ao2(i = 1,... ,k; j = 1,... ), and that the xi,j are 

jointly independent. It will be easier at times to refer 
to the precision Ai = /oi2 instead of the variance. Set 
w = (w, ..., Wk) and A = (Al, ..., Ak). Throughout, we 
write vectors in boldface, random variables in upper case, 
and their realizations in lower case. 

We incorporate first-stage information by assigning 
a prior distribution and using Bayes' rule to infer the val- 
ues of the unknown mean Wi and precision Ai. Alloca- 
tions are then made with respect to the expected probability 
of correct selection rather than the worst-case LFC. If we 
assume a noninformative prior distribution, it is straight- 
forward (de Groot 1970) to show that after observing the 

first-stage output, the joint distribution for Wi and Ai is a 
normal-gamma distribution, 

Ai ~- ((ro0- 1)/2, &/2(r0 - 1)/2), 

WilAi - N (Xi,, A'/ro), 

(2) 

(3) 
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where the gamma distribution ((a, ,3) has mean a/,8 and 
variance a//p2, and the normal distribution N(p,, c-2) has 
mean Au and variance - 2. Further, the marginal distribution 
and frequentist confidence interval for the unknown mean 
are both described by the same three-parameter Student-t 
distribution, 

W - St(x, rol/2, ro - 1), (4) 

where the three-parameter Student-t distribution St (,u, K, v) 
has mean ,L, precision K, and degrees of freedom v. When 
v > 2, the variance is K-V/(V- 2). 

The probability of correct selection is an essential feature 
of indifference-zone procedures. We therefore consider the 
0-1 loss function associated with selecting i as best when 
the means are actually w, 

1 otherwise. 

The expectation Ew[So0- (i, w)] is the probability that i is 
not the best system. 

In many business and engineering applications, however, 
the expected opportunity cost is more relevant to a decision 
maker. For example, a 90% chance of incorrect selection 
with a loss of $1 may be preferable to a 1% chance of los- 
ing $1 million. We therefore also consider the opportunity 
cost (sometimes called the linear loss) 

7o.c. (i, w) = max wj - wi. (6) 

The loss is 0 when the best system is correctly selected- 
otherwise the loss is the difference in means between the 
best and the selected system. 

In practice, there may be a deadline for completing a 
simulation analysis, and the CPU times per replication 
c = (c, ... , c,) may differ for each system. For instance, 
conclusions from a simulation study may be needed in 
24 hours, and simulations of systems with complex algo- 
rithms for factory floor control may take longer to complete 
than for systems with simple control algorithms. This moti- 
vates a budget-constrained allocation, with crT = b. Fur- 
ther, if c can be converted to units that match the simulation 
output (say, dollars), then a trade-off can be made between 
additional replications and the expected value of informa- 
tion from those replications (an unconstrained budget allo- 
cation). The total number of replications can be constrained 
to be b, regardless of the CPU time for each replication, 
by setting c = (1,... , 1). 

The goal is to determine the second-stage allocation r 
that minimizes the cost of replications plus the expected 
loss to a decision maker after all replications have been 
run. Let xri = (xi, r+ ... , xir+r) denote the second-stage 
output for system i, and let xr = (Xr, ... , Xr) denote all 
second-stage output. The number of stages of data used for 
an estimate is given by the number of bars or hats, so that 
the overall sample mean is 

r0+ri 

Xi= xi, j/(ro + ri), 
j=l 

and 2i = r ri(xi- Xi)2/(r + ri - 1) is the overall 
sample variance. Then the posterior distribution of the 
unknown mean, conditional on ri, is (de Groot 1970) 

Wilri St(xi, (ro + ri)/r-i, ro + ri - 1). (7) 

Let dN (Xr) = maxi xi be the system with the highest overall 

sample mean. Given xr, the expected loss for loss function 
Y is EWixr [(dN(Xr), W) I Xr]. 

Because r is chosen before the second stage, we take 
the expectation with respect to the random variable Xr. 
The cost of replications plus the expected loss for select- 
ing the system with the maximum overall sample mean is 
therefore 

p(r) df crr + E[Ewlxr[Y(dN(Xr), W) I Xr]]. (8) 

This leads to the following optimization problem: 

minp(r), s.t. ri > 0 for i = 1,... ,k. (9) 

Special cases of the problem in Equation (9) have been 
solved elsewhere. Gupta and Miescke (1994) show that 
when k = 2, cl = c2, and the budget is constrained, the 
optimal second-stage allocation minimizes the absolute 
difference of the posterior precision for the mean of each 
system, regardless of whether the 0-1 loss or opportunity 
cost is used. For the opportunity cost, k > 2, c, = ..* = 
Ck = 1, and known precision, Gupta and Miescke (1996) 
provide an optimal allocation assuming that only one obser- 
vation can be made (b = 1). Repeatedly allocating a sin- 
gle replication at a time leads to a one-at-a-time sequential 
procedure that may not be optimal amongst all sequential 
procedures (Berger 1985). 

3. NEW TWO-STAGE AND 
SEQUENTIAL PROCEDURES 

The general formulation in ?2 allows flexibility for allo- 
cating replications that is not allowed by the indifference- 
zone approach, but there is currently no known closed-form 
solution for the general problem in Equation (9). Further, 
numerical determination of the optimal allocation may be 
so computationally demanding that time might be better 
spent running more simulations rather than determining an 
optimal allocation. 

This section derives good allocations of replications that 
are much simpler to compute than the optimal alloca- 
tion. The allocations asymptotically minimize a bound on 
the expected loss. The bound is obtained by examining 
the k- 1 pairwise comparisons between the system with the 
highest first-stage sample mean and each other system. We 
use this idea to derive procedures that reduce the expected 
opportunity cost in ?3.1, and procedures that improve the 
probability of correct selection in ?3.2. Both subsections 
present two procedures. The first applies when there is no 
budget constraint on the number of replications, and the 
second applies when the budget is constrained. 

Sequential extensions of the two-stage procedures are 
presented in ?3.3. 
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3.1. Two-Stage Procedures: Opportunity Cost 

Procedure 2S is a new two-stage procedure that reduces 
the expected opportunity cost loss when the budget is not 
constrained. The name 2SS (for linear loss) is used rather 
than O' (for opportunity cost) to avoid confusion with the 
OCBA procedure, a different approach explored by Chen 
(1996). 

Procedure S2SF is similar to Procedures 9 and I in that 
r0 independent replications of each system are observed 
during a first stage, a second stage further distinguishes 
the performance of each system, and the system with the 
highest overall sample mean is selected as best. The nov- 
elty of Procedure 2S2 is that the number of replications 
is determined by balancing the cost of additional repli- 
cations against the reduction in expected opportunity cost 
obtained from second-stage output. Procedure SS is based 
on the approximation of Theorem 1 that assumes small 
replication costs, as occurs when the budget is essentially 
unconstrained. 

PROCEDURE SS, FOR OPPORTUNITY COST (LINEAR Loss) 
AND UNCONSTRAINED BUDGET. 

1. Specify the first-stage sample size r0. 
2. Take independent replications xi, ,... , xi,r, for each 

system, i = 1, ... , k. 
3. Compute the first-stage sample mean xi = Ej? xi j/ro 

and sample variance 

^i2 _.Ero (Xi,j Xi)2 A2 __' 

r0-1 

4. Determine the first-stage order statistics, x[J] < *- < 

X[k]. Compute the precision Ai,k = rO/('k]+ + /i]) of 
the difference W[i] - W[k] in unknown means, for 

[i] # [k]. 
5. Estimate the cost per replication ci for each system, 

based on the average run times during first stage sam- 
pling (express in same units as simulation output). 

6. Compute the number of additional replications (round 
up if necessary), 

= max 0, r((i(Ai,,)/2 
0 

( 

kro-I [(Ai,k)2 ([k] 
- -[i]) /2C[i])1/2] -r} 

for [i] $ [k] and 

?=lmaxlo,I [(( k] (i 
)k 2 

r -1 + Ai, k (Xkl [i])2 rIkI =max 0, 1&[k]E(Ai,k) (ro 1)- 1 

,ro-1[(Ai.k) 2X[k]-X[i])])/2C[k]) '1-O 

7. Take ri additional observations from system i, inde- 
pendent of all other replications for all systems, for 
i= 1,... ,k. 

8. Compute the overall sample means xi= .j-r xi,j/ 
(r + ri) 

9. Select the system with the largest xi as best. 

The computing requirements for Procedures 9, %, and 
SS are comparable. All compute the sample mean and 
variance of each system. Procedure 2SS needs a few addi- 
tional math operations per system, and the others require 
the solution of Rinott's integral. 

The total number of replications of all three procedures 
is quite sensitive to subjectively specified parameters (c for 
Procedure SS-; 8* and P* for Procedures 2a and T). 
The number of replications is readily controlled, however, 
with a budget constraint, crT = b. Procedure SESY($) is a 
budget-costrained version of Procedure 2L and is a con- 
sequence of Corollary 1. 

PROCEDURE SS (a), FOR OPPORTUNITY COST (LINEAR 

Loss) WITH BUDGET CONSTRAINT b. 

1. Complete Steps 1-4 of Procedure S5. 
2. Estimate ci with the average CPU time per replication 

for system i for i = 1,... , k; select b for the budget 
constraint crT = b for second-stage replications; and 
initialize the set of systems considered for second- 
stage replications, S = { 1,..., k}. 

3. Compute a tentative number of additional replications 
for each system [i] E S, 

b + EjEY rocj 
r[i] = 

&2r/2 
- -r 

(j cjc[ilj 

where 

(Ai, k)/2 (ro-l+A ,k(ik]--i)2- 

r[i] = ro-l[(Ai,k) 2(X[kl] [i])] for [i] [k] 

Ek-l,[j] for [i]= [k] 

4. If all allocations ri are nonnegative, then continue 
to Step 5. Otherwise, remedy the nonegativity con- 
straint violation: (a) For each [i] E S? such that r[i] < 0, 
remove [i] from Y and set ri] = 0, (b) For each [i], 
if [i] E Y or [k] E Sf then reassign 

rO /(k] + 6&]) r/(2+k= 
hi,k-= rO/ k] 

V^a[] 

if [i], [k] E Y 

if [i] ? Y; [k] E YF 
if [i] E Y; [k] ? Y, 

and (c) return to Step 3. 
5. Round the ri to an integer number of replications (see 

the note after the procedure). 
6. Take ri additional observations from system i, inde- 

pendent of all other replications for all systems, for 
i=1,...,k. 

7. Compute the overall sample means xi= 
Ero o+ri E-1 Xi, j/(ro ? ri). 

8. Select the system with the largest xi as best. 
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The rounding in Step 5 may violate the constraint cr' = b. 
Budget overruns are not likely to be a concern if the amount 
of rounding is small. If the budget is truly tight, a practical 
approach for overruns is to solve for r again with a slightly 
decreased budget. 

The theorem and corollary that justify these procedures 
rely on some additional notation. The state of uncertainty 
after the first stage (Equations (2) and (3)) is denoted by 
Ji = xi, n, = r0, a = (r0 - 1)/2, and 3,i = i2(ro - 1)/2. 

Define [i] so that /-[1] <" <- s L[k] is nondecreasing. Ties 
occur here with probability 0. Denote by Ai,j the precision 
of the difference in unknown means W[i] - W[], 

Aij - a( + ). (10) 
(n[] n[j / 

Denote the expected value zi of the unknown mean of sys- 
tem i, given xr, by 

def 
zi = E[W Xr ] =i,. (11) 

After the first stage but prior to observing xr, the unknown 
overall output mean 

Zi = E[Wi l Xr,] (12) 

has St(xi, ro(ro + ri)/(ri&i2), ro - 1) distribution (de Groot 
1970). Denote by A{i,j1 the predictive precision for the dif- 
ference in unknown posterior means Z,il -Z[il, 

A = aI wl + 
n n1. (13) A{i,j} = a n[i](n[il + r[i]J) n[j](n[1 + r[j] ) (13) 

Let , (s) and I, (s) be the density function and cumu- 
lative distribution function of the standard Student-t ran- 
dom variable with v degrees of freedom, and let P,(s) = 

(x- s)0()x)dx. Bracken and Schleifer (1964) indicate 
that I- (s) = `2l (s) -s(l - I(s)). The theory below 
presumes that the allocations ri are continuous. 

THEOREM 1. Assume that the xi,j are jointly indepen- 
dent with JV(wi, Ail) distribution. Denote by ; the joint 
prior distribution of W, A, with Ai - (a, 3i), WilA " 
JN(fLi, Ai-/ni) given Ai, and (Wi, Ai) independent for i= 
1,...., k. Let the loss function be the opportunity cost of 
Equation 6, and let c, [i], A{i ,}, and Ai,j be as above. Then: 

* The objective function p(r) of Equation 8 is bounded 
below by 

P* (r) = crT + E;[max wj - w]] 

k-I 

- E Ai k} 2a[A{i, k (LL[i] - L[k])] (14) 
i=l1 

and the bound is tight when k = 2. 
* If the ci are sufficiently small for all i, the rti] that 

minimize P*.. (r) are approximately 

for [i] 0 [k], and 

Eik=l (Ai,k )/2 2 . ] [/. k (L[k]- [ /]) [i2 ])I/ 

k-I 2a- 1 1/02a [( i,k )(/ L[k] - ii)]t 1/2 

= (k] 2C[k, (a1/fk) 

- nkl . 

PROOF. See the appendix. 

When k = 2, E;[maxj wj - W[k]] = Al /2I2t[A^t[l] - 

/r1[2)]. Excluding replication costs, the expected opportunity 
cost of a pairwise comparison is therefore exactly 

A1 1-/2 2[A 1/2 A -[2])] 
/ -A rA/2 - 1,2 (] -A2){1, 2} *2aA2 (A[ A[21 

When k > 2, the simulation costs plus the expected losses 
from k- l pairwise comparisons between the system with 
the highest first-stage sample mean and each other system 
is then 

k-I 
T -AI1/2G-r 1/2 cr + Y -",,,j)] C 
iT 

+ E 
A1, l.2[t[i k (]d[i]- l[k])] 

i=l 

-A- 2a[A1}/2 1])] - i, kl *2a[A L'"i, k)\ (A[i] 
- 

A[k])] 
- (16) 

Because the Bonferroni inequality (e.g., see Law and 
Kelton 1991) can be considered to be a sum of pairwise 
losses (albeit for the 0-1 loss), the allocation that minimizes 
Equation (14) also minimizes the Bonferroni-like approxi- 
mation of Equation (16). 

The following corollary justifies the second-stage allo- 
cations for Procedure L2(2). This asymptotic result pre- 
sumes that b is large relative to the ci. 

COROLLARY 1. The solution to min p* .(r) subject to 
cr = b for asymptotically large b is 

b + :, jn 
-i]b = k IC I= D;1/2 --n[i], 

i j= ( cjC[ilni[j )/2 fi [i] 1 [i 

(17) 

where 

2a-( 
(A ) 

1/2 + i2 k(y[k]-'[])2 

i A] k 02a[(Ai,k) / 
2 

([k]--[i])] for [i] : [k]. (18) 

E-l for [i] = [k] ETi[j],a 

PROOF. See the appendix. 

When b is small, some of the allocations of 
Equation (17) may violate the nonnegativity constraint for 
replications. Suppose that one or more r*. b < 0, and let 

IN = {[i] I r, b > 0}. To comply with the nonnegativity con- 
straint, set r[] b = 0 for all [j] ? ST. But this change vio- 
lates the budget constraint, so [i]e.: i*[i],b must decrease. 
Further, the precision A{, k} of the difference Z[i] - Z[k is 
no longer well approximated by A, k, but by 

(Ai, ) 1/2 
2or+ Ai k ([k] - 

A[i],) )/2( )] 

ri] =- ( 2c[i](a/j,[ij) 

-n[], (15) 

Ai,k 

A , n[i]//3[i] I. [,/^ , 

if [l,]b I[k] b are both large, 
if r]b=O and [kl, is large, (19) 
if r*b is large and r]=0. f 

[i], b ~ [k], b --0' 
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We therefore replace Ai, k in Equation (18) with the appro- 
priate approximation for A{i,k} from Equation (19) when 
recalculating r*] b for [i] E Y, using [i] e _S as a criterion 
for indicating if [i, b is large. An approximataion for Ai, k 
is not needed when [i], [k] , S'. 

Procedure SS(S) implements this process iteratively 
until the nonnegativity constraint is guaranteed. At most 
k- 1 recalculations are needed, as 1 I is decreased by at 
least one for each added iteration. The worst-case computa- 
tional complexity is therefore O(k2) for small b. For suffi- 
ciently large b, the worst-case complexity is O(k) because 
all systems have nonnegative allocations on the first pass. 

3.2. Two-Stage Procedures: 0-1 Loss 

The two-stage procedures presented in ?3.1 reduce the 

expected opportunity cost of a selection. This section 

presents analogous procedures that reduce the expected 0-1 
loss, or equivalently the probability of incorrect selection. 
Procedure 0-1, the 0-1 loss function analog of Procedure 
SY , is identical to Procedure SS, except that Step 6 
becomes 

6'. Compute the number of additional replications, 

r[i = max {0, (7i](Ai, k)3/2(k] -]) ' 

r0o-I [(Ai, k)/2([k] - [i])]/2[i]) 1 n/21 

for [i] : [k], and 

_ "k-1 

r[k]-- max 0, 6k(Aik)3/2(X[k 
- 

[i]) 
. 

l/2- 

- n[k] (ro-l [(Ai k) /2(X[k]- X[i])]/2[k] -n[k] ' 

Procedure 0-1 differs from Procedure i mainly because 
an approximation to the expected posterior probability of 
correct selection, rather than the LFC, drives the allo- 
cation of second-stage replications. Theorem 2 justifies 
Procedure 0-1. 

THEOREM 2. Asume that the xi,j are jointly indepen- 
dent with JN(wi, A-l) distribution. Denote by ; the joint 
prior distribution of W,A, with Ai "- (a, 3,i), WilAj, 

- 

JV(,ti, A-I/ni) given Ai, and (Wi, Ai) independent for 
i = 1,... ,k. Let the loss finction be the 0-1 loss of 
Equation (5), and let c, [i], Ai.j, and A{i j} be as above. 
Then: 

* The objective function p(r) of Equation (8) is 
bounded below by 

p_r = crr + E [max wj- w[k]] 

k-I 

E- YZ {2a["{i k} (/[i] - l[k])] (20) 
i=l 

* For sufficiently small ci for all i, the r[i] that minimize 
P_1 (r) are approximately 

-* ( (A, k) (l'[k]- [[i]) 2a [(A, k) /2 (i[k] - 
[i[] )] 

1/2 

r[i] V 2c[i] (a/I3[i]) I 
(21) -n[i] 

for [i] : [k], and 

Ei=1 (Ai, k) (A[L[k] -Li] )0(2a[(Ai,k)/ ([k] -_j.[i])] 
1/2 

~[rk] =2C[k] (a/ 3[k]) 

-n[k]. (22) 

PROOF. See the appendix. 

Unlike the bound in Equation (14), the bound in 

Equation (20) is not tight for k = 2 because of an approx- 
imation in the proof. The bound becomes tighter as the ri 
increase. 

Selecting the system with the highest sample mean does 
not necessarily maximize the probability of correct selec- 
tion (e.g., see Gupta and Miescke 1994). However, this 
selection rule has intuitive appeal and is used implicitly 
by indifference-zone procedures, and we conjecture that 
our procedures tend to avoid situations where the rule is 
suboptimal. 

Procedure 0-1 (/), a budget-constrained version of 
Procedure 0-1, is obtained by modifying Step 3 of 
Procedure SSE(3S) to account for the 0-1 loss function. 

3'. Compute a tentative number of additional replications 
for each system [i] E S', 

b + Ej,:, rocj r 
r[i]- 2 1/2 -r 

v Cj C[i] jjZ 
yj 

.[i] 
[i 

where 

(Ai, k)312([k] - X[i]) 

Y[i] = ro-I_[(Ai,k)'12(X[k] - x[])] for [i] : [k] 

r-I for [i] = [k] 

This allocation is a consequence of Corollary 2. 

COROLLARY 2. The solution to minp ^1 (r) = Po-_ (r) + cr 

subject to crT = b for asymptotically large b is 

b -- .j=, cjn 
r[i], b = 1/2-n[i] 

zk (j c[i]iYj 

J wherile[i] 

where 

(Ai, k)3/2 ([k] 
- 

[i]) 

Y[i] = x k2a[(Ai,k)/ (12[k] 
- 

[i])] 

i-I [j] 

for [i] 0 [k] 
for [i] = [k] 

PROOF. The proof of this parallels that for Corollary 1, 
except that y[i] replaces r7[i]. ? 



738 / CHICK AND INOUE 

3.3. Sequential Procedures 

Chen (1996) and Bechhofer et al. (1995) describe sequen- 
tial procedures that improve sampling efficiency based on 
different assumptions than the decision theoretic approach 
here. Sequential procedures allow a modeler to run a cer- 
tain number of replications, observe the output, and repeat 
until a suitable stopping condition is achieved. A potential 
advantage of sequential procedures is that sampling effi- 
ciency may be improved at each stage by incorporating 
information from all earlier stages. A second advantage is 
that the stopping rule might be used to provide a Bayesian 
PCS guarantee. Additional stages can be run until a pre- 
specified posterior PCS can be claimed. 

To develop sequential variations on our new procedures, 
a technical issue requires attention. Because the number of 
replications r, i seen so far for each system may differ, the 
shape parameter ai = (r, i - 1)/2 for the unknown preci- 
sion may differ as well. The results in ??3.1 and 3.2 require 
a common shape parameter a. The problem with different 
ai is that the differences W[i -W[jI and Zi] - Z[j do not 
have three parameter Student-t distributions because of a 
mismatch in the degrees of freedom. 

One approach to this problem is to approximate the 
distributions of these differences. A sequential procedure, 
Procedure SfE(Y), is obtained with the following mod- 
ifications to Procedure 2i(S(). The changes incorporate 
the standard Welch approximation for the difference of two 
Student-t random variables with different degrees of free- 
dom (e.g., see Law and Kelton 1991). 

* Allow for Steps 2-7 to be repeated until a user- 
specified condition is met (e.g., allocate r at each stage 
until a total budget of b > r is exhausted). 

* Calculate ui = xi, ai = (r, i- 1)/2, Pi = &i2(r, i- 
1)/2, ni = r, i, based on all r, i replications seen so far. 

* In Step 4, the precision parameter Ai, becomes 

(^i 

2 

/ro,[i/ + []/ro,[k]^ ) if [i],[k] E Y, 

Ai,k = r [k]/^k] if [i] ? S; [k] E , (23) 

ro,[i]/&-2] if [i] E S; [k] ? Y. 

* Replace all occurences of r0 -1 with the Welch 
approximation for the degrees of freedom, v[i, [k], where 

(a /r[ i] +/roi ] [ O, k])0 

,,j], [k]-- 
( r, i /(r'[i]- ')+ ( r [k] ) , [k ) 

rO,[k] 
- 1 

, ro,[i- 1 

if [i], [k] Se, 

if [i] ? S; [k] S, 

if [i] E ?; [k] g i. 

* Replace all other occurences of r0 with r, [i]. 
Similar changes to Procedure 0-1(_A) result in the sequen- 
tial Procedure 0-1 (S). 

4. AN EMPIRICAL COMPARISON OF 
THE PROCEDURES 

This section presents some results from a small empiri- 
cal study that assess the effectiveness of the procedures 

described above to identify the best system. Each 
procedure's effectiveness is evaluated with respect to four 
performance measures described in ?4.1. The selection 
problems in ?4.2 are artificially designed to provide some 
indication of the ability of Procedures %, S (S)() and 
0-1(Sa) to allocate replications to competitive systems and 
avoid simulating non-competitive systems. Section 4.3 uses 
a less artificial selection problem to analyze the perfor- 
mance of Procedures 9, T, SS(SA) and 0-1(S?), as a func- 
tion of the total second-stage sampling. We use ci = 1 
to constrain the total number of replications for our new 
procedures. A thorough exploration of the potential bene- 
fits of allowing differing costs is beyond the scope of this 
paper. 

4.1. Performance Measures for the Procedures 

The effectiveness of each procedure is measured with 
respect to four performance measures, each of which is rel- 
evant to the justification of at least one of the procedures. 

The first performance measure to evaluate the procedures 
is the PCS, estimated as the empirical fraction of correct 
selections (EFCS) of the best system. The derivations of 
Procedures C and 9 both provide PCS guarantees. 

The second performance measure to evaluate the 
procedures is the empirical fraction of selections that are 
within 5* of the best system. Nelson and Matejcik (1995) 
show that many indifference-zone procedures, including 
Procedure 9, select a system within 8* of the best for all 
configurations of the means. 

The third performance measure is the expected value of 
the Bonferroni bound on the probability of correct selection 
(EBPCS), given the output obtained from an application of 
a selection procedure. By design, Procedure 0-1(S) allo- 
cates replications to asymptotically maximize EBPCS. The 
Bonferroni bound for the probability of correct selection 
(BPCS) is estimated at the end of the procedure, when the 
system dN(Xr) with the largest overall sample mean xdN(r) 
is selected. Let Ai, dN(x) and V[i, dN(x,) be the approximate 
precision and degrees of freedom for W[i - WdN(x) using 
the Welch approximation, based on all output. The BPCS 
is then 

max {0, - 1 L 
Vti. dN(Xr) [" idN(xr) ([i] Xd(x))] (25) 

[i]#dN (Xr) 

(Reverse signs, dN(xr) -[i], for a minimization problem.) 
The Welch approximation is used even when the degrees 
of freedom match for numerical stability. Inoue and Chick 
(1998) further discuss the relationship between P-values 
and the BPCS. 

The fourth performance measure is the expected value 
of the Bonferroni-like bound on opportunity cost (EBOC), 
the opportunity cost analog of Equation (25), 

X-1/2 [ -1/2 - 
E i, dN (Xr) I, ,dN(Xr)Ai, dN (X,)X[i] -XdN(Xr))] 

[i]#dN (Xr) 

By design, Procedure SL($A) allocates replications to 
asymptotically minimize EBOC. 



4.2. A Stylized Selection Problem 

Stylized selection problems can provide insight into the 
performance of selection procedures in controlled envi- 
ronments. Here we use the monotone decreasing means 
(MDM) configuration, which evenly spaces the means of 
each system, 

Wi = Wi - (i- 1)8*, for i = 2,..., k, 

for some '. The extensive study of Nelson et al. (1999) 
indicates that Procedures 6 requires a smaller number of 
replications than Procedures 91 in the MDM configuration 
when the number of systems is large (k > 10 in one experi- 
ment). Because Procedures R and W are already compared 
elsewhere, this section focuses on the ability of Procedures 
', St(9A) and 0-1(O ) to effectively allocate replications 
to identify the best system, as a function of the number of 
systems (k = 2, 5, 10, 100). 

The procedures are compared by running a common 
first stage. The total second-stage allocation of each 
procedure is made the same by letting the total num- 
ber of second-stage replications b for Procedures YeS(S) 
and 0-1(S) be the same as the total second-stage allo- 
cation of Procedure T. Independent replications are then 
run for the second stage of each procedure, and the sys- 
tem selected to be best by each procedure is recorded. 
This process tests whether the new procedures can more 
effectively allocate the number of replications suggested 
by Procedure T. Three thousand macroreplications are 
run so that the error for estimating a probability of cor- 
rect selection of 0.95 gives two-decimal-place accuracy 
(/0.95 x (1 - 0.95)/3000 ; 0.004). 

We initially set ' = 1/2, ro = 10, P* = 0.95, 5* = 1//Y 
and oa2 = 4 for i 1, ...., k. System 1 therefore performs 
best, and System 2 performs within 5* of the best. Table 1 
presents the average number of second-stage replications 
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(ANR) per system for each procedure, as well as the per- 
formance measures. 

Procedures -$d(?3 ) and 0-1 (a) perform at least as well 
as Procedure ' for all 4 performance measures, for each 
of k = 2, 5, 10, and 100. More than half the comparisons 
indicate a statistically significant difference (95% confi- 
dence with a paired t test), but several comparisons are 
within error bounds. Procedure t95(aS) also performs at 
least as well as Procedure 0-1(3), or within error bounds, 
for all performance measures and values of k tested. 
Procedures ?Si(?a) and 0-1 () outperform Procedure % 
for EBPCS and EBOC for each k tested, and outperform 
Procedure % for the empirical fraction of correct selec- 
tions (EFCS) of the best system for larger numbers of 

systems (k = 10, 100). The use of additional first-stage 
information therefore improves the second-stage allocations 
in this experiment. Procedures YE$(2), 0-1 (?), and % 

perform more similarly on this experiment when measured 

by the empirical fraction of selections within 8* of the 
best. For this MDM experiment, then, the new Bayesian 
procedures more frequently identify the true best system, 
particularly when the number of systems is large, but when 
Procedure T does not identify the best system, it often 
identifies a very good system. 

Somewhat surprisingly, Procedure 0-1 (S) does not per- 
form best with respect to EBPCS, a measure that the 

procedure was designed to improve. This is because 
the derivation of Procedure 0-1 (S) requires one more 

asymptotic approximation that the derivation of Procedure 

?e5(?). Procedure YS2(a) is designed to improve EBOC, 
and the procedure performs best with respect to this mea- 
sure. Further, its performance improves relative to the other 

procedures as the number of systems increases. In this 

experiment, then, the Bonferroni-like bound and asymptotic 

Table 1. Performance of Procedures 0, 0-1 (3), and S (SA) for the monotone decreasing means (MDM) 
experiment of ?4.2. 

Number of Systems, k 

Figure of Merit Procedure 2 5 10 100 

ANR Procedures ', 0-1(9), ~2(A?) 738 3,429 8,784 42,862 
Empirical fraction of Procedure T 0.8363 0.9140 0.9323 0.9763 
correct selections Procedure 0-1 (A) 0.8527* 0.9117 0.9480* 0.9937* 
(EFCS) Procedure SE(SA) 0.8500 0.9293* 0.9660* 0.9987* 

Empirical fraction of Procedure C 1.0000 0.9943 0.9990 1.0000 
selections within 8* Procedure 0-1 (S3) 1.0000 0.9953 0.9977 0.9997 
of the best Procedure SgE(a) 1.0000 0.9953 0.9993 1.0000 

Expected Bonferroni Procedure T 0.8336 0.8379 0.8649 0.9318 
bound on PCS Procedure 0-1(a) 0.8446* 0.8339 0.8821* 0.9717* 
(EBPCS) Procedure tS(aR ) 0.8470* 0.8462* 0.9022* 0.9842* 

Expected Bonferroni Procedure T 0.0176 0.0138 0.0104 0.0037 
bound on opportunity Procedure 0-1(a) 0.0157* 0.0128* 0.0075* 0.0012* 
cost (EBOC) Procedure 92E(a) 0.0154* 0.0110* 0.0055* 0.0005* 

The symbol * indicates a statistically significant difference in performance when compared with Procedure T. 
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approximation used in the derivation of Procedure S-S(?) 
do not appear to deleteriously affect its performance. 

We repeated the experiment with small modifications to 
the parameters (P* = 0.90 and oj2 = 1 for i = 1,... , k) 
and obtained the same qualitative results (data not shown). 
This study did not investigate the relative performance of 
the procedures when the variance for each system differs. 

4.3. An Inventory Policy Selection Problem 

We also consider the performance of the selection 
procedures with respect to a problem that has less structure 
to the configuration of the means and variances of each sys- 
tem. The systems considered are the five (s, S) inventory 
policies introduced by Koenig and Law (1985) and ana- 
lyzed later by Nelson and Matejcik (1995). The best sys- 
tem is the policy that has the minimum expected cost per 
period, evaluated over 60 periods. 

In this experiment we use a somewhat different com- 
parison mechanism to evaluate the performance of the 
procedures as a function of the total second-stage bud- 
get. We constrain the total number of replications after 
the first stage, rather than letting Procedure W determine 
the second-stage allocations for Procedures S9(a) and 
0-1(a). For Procedures a and W, this means changing 
the proportionality constant for the number of second-stage 
replications for each system to obtain a specified total 
number of replications. Let Procedures a(a3) and W($S) 
denote budget constrained version of these indifference- 
zone procedures. Although no PCS guarantee is claimed, 
replications are still allocated proportional to the first-stage 
sample variance. 

Suppose that for a specific first-stage, ro = 5,x = 

(122.9, 121.4, 126.0,132.4, 145.9) and the sample vari- 
ances are (13.7, 4.0, 11.4, 6.6, 4.9). If the second-stage 
budget is constrained to b = 30, Procedure 9(3) allo- 
cates r = (14,0, 10,4, 2); Procedure t(3) screens out 
Systems 4 and 5 (8* = 1) and allocates r = (16, 1, 13, 0, 0); 
Procedure 0-1(S) allocates r = (15,8,7,0,0); and 
Procedure 292(a) allocates r = (16, 8, 6, 0, 0). The new 
procedures allocate r4= r5 = 0, because more replications 
for Systems 4 and 5 are unlikely to appreciably change 
the posterior probability that either is best. They might be 
selected, however, if the additional replications for the other 
systems indicate that Systems 4 or 5 have the best overall 
sample mean after both stages are completed. On the other 
hand, once Procedure T screens out a system, that system 
may no longer be selected as best. 

We estimate the average performance of each two-stage 
procedure by running 3000 independent macroreplications 
of first (ro = 5) and second stages. Each procedure is then 
compared with respect to EPCS, EBPCS and EBOC, as a 
function of the total number of second-stage replications. 

We tested several variations of Procedure ̀ (9), cor- 
responding to different levels of 8* on the interval [0,1]. 
Once the total number of second-stage replications is fixed 
for *(A), the effect of 8* is to change the number of sys- 
tems screened out. A smaller S* corresponds to a smaller 

Figure 1. Empirical fraction of correct selections 
(EFCS) as a function of the total number b 
of second-stage replications. 
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number of screened systems. Although Procedure % can- 
not be run with 8* = 0 because a division by 8* is required, 
Procedure T(2S) can be run with 8* = 0, because second- 
stage replications are allocated proportional to the sample 
variance of unscreened systems so that a budget constraint 
is satisfied. Nelson et al. (1999) remark that when 8* = 0, 
the screening in Procedure C(9S) is a generalization of the 
subset selection procedure of Gupta (1965). Screening with 
8* = 0 results in a better empirical performance than with 
5* = 1 for this experiment, so we present results for 8* = 0. 

The EFCS is displayed as a function of the number 
of additional replications in Figure 1. (System 2 is con- 
sidered "best" based on many thousands of replications). 
Procedure %(?S) outperforms Procedure ak(A) for EFCS 
because it does not allocate replications to screened sys- 
tems that are apparently inferior. Both are outperformed by 
Procedures t97(a) and 0-1 (). To reach the same EFCS 
obtained from b = 200 replications for Procedure At(X), 
Procedure YY (3) requires 110 replications and Procedure 
C(?a) requires 160 replications. The better performance of 

the new procedures can be attributed to their inclusion of 
additional first-stage information when allocating second- 
stage replications. 

Figure 2 indicates that the procedures have approxi- 
mately the same relative ranking for EBPCS as observed 
above for EFCS. The one difference is that Procedure 
T(AS) outperforms Procedure 0-1((), when the number of 
second-stage replications is small. The asymptotic approx- 
imations in the derivation of Procedure 0-1 () apparently 
therefore have a negative effect when the total budget is 
particularly small. 

Procedure 2(S) achieves an EBPCS of 0.9714 with 
b = 200 replications during the second stage. Procedures 
S2(3() and 0-1(3), on the other hand, require approx- 

imately b = 125 and b = 145, respectively, to obtain the 
same EBPCS. This means that the new preocedures tend 



Figure 2. Expected Bonferroni bound for the probabil- 
ity of correct selection (EBPCS) as a func- 
tion of the total number b of second-stage 
replications. 
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Figure 3. Expected Bonferroni bound for opportunity 
cost (EBOC) as a function of the total num- 
ber b of second-stage replications. 
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to provide more evidence for correct selection, on the basis 
of the simulation output observed at the completion of the 

procedure, than the indifference-zone procedures. 
Figure 3 indicates that Procedures 0-1(23) and c(3A) 

perform similarly with respect to EBOC. Procedure 

55(2A3) is designed to reduce EBOC, so there is no sur- 

prise that it performs best. Procedure 5t(A3) performs worst 
because it ignores the most first-stage information. 

Changing the systems slightly by doubling the number 
of simulated months per replication does not modify the 

qualitative nature of the results displayed in the figures. 
Sequential allocation provides a distinct advantage for 

this problem. If Procedure 0-1(S?) is used with r = 5 repli- 
cations allocated per stage until a total of b = 100 replica- 
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tions are observed, the EBPCS is 0.9748, an increase from 
0.9486 from the two-stage Procedure 0-1(23). Sequential 
allocation also improves EFCS and EBOC. 

The CPU time required to compute the second-stage 
allocation is not included in the sampling budget con- 
straint, but may influence the computational efficiency of 
the procedures if the cost of computing the allocation is 
nontrivial relative to the sampling budget b. Here the aver- 
age CPU time per allocation computation for Procedure 
R(3A) is 0.0020 second, compared with 0.018 second for 
Procedure 0-1(5). Procedure a3(93) (b = 100) results in 
an EBPCS of 0.925, and requires 15.1 seconds on average 
(CPU time for allocation plus 100 replications). Procedure 
0-1(5?) (b = 50 replications allocated r = 5 at a time) 
results in an EBPCS of 0.926, and requires 9.39 seconds 
on average. Procedure 0-1 (S) therefore needs 9.39/15.1 . 
0.62 as much effort as Procedure a(a3) to provide the same 
EBPCS. The allocations of the new procedures require 
more time than for the indifference-zone procedures. The 
penalty for the increased computation time for the new 
procedures is more than offset by the improved efficiency 
for identifying the best system in this example. In general, 
the benefit increases as simulation run times become longer. 

5. DISCUSSION 

Many two-stage indifference-zone procedures ignore a 
fair amount of first-stage sampling information. Because 
Procedure % can screen after the first stage, it incorpo- 
rates much more first-stage information than Procedure 'X. 
Procedure c therefore outperforms Procedure a when sev- 
eral systems are screened out (Nelson et al. 1999). 

Procedures 5E5(A) and 0-1 (3) both use more first stage 
information than Procedures O5 and *. The new procedures 
are justified by (i) deriving a Bonferroni-like approxima- 
tion for the total expected loss, (ii) determining an allo- 
cation that asymptotically minimizes that approximation 
as the cost of replications gets arbitrarily small, and (iii) 
establishing budget-constrained allocations that are asymp- 
totically optimal as the budget gets large. The asymptotic 
and Bonferroni-like approximations cause the procedures 
to be suboptimal. However, the improved use of first-stage 
information when allocating additional replications seems 
to outweigh the deleterious effect of the approximations, 
even when the number of systems is k = 100. 

Procedure SSY(3) seems to perform best among the four 

procedures considered here, for both the MDM experiments 
and the inventory selection problem, with respect to four 
measures of effectiveness. Additional experiments (data not 

shown) indicate that modifying ro does not change this 

ranking. Procedure 0-1(3) also shows significant improve- 
ments over Procedure a, but the performance improvement 
is less impressive than for Procedure 59?5(9). The extra 

asymptotic approximation in the derivation of Procedure 

0-1(3) is the likely culprit for the performance degrada- 
tion. An open question is whether other bounds for the 

expected loss result in more efficient procedures. 

n I I I I I T ^ j g Q a 

0.75 - 
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In this paper we did not consider common random num- 
bers, an important efficiency improvement technique for 
distinguishing the performance of systems. This presents 
an avenue for further research. 

6. CONCLUSIONS 

The new procedures presented here provide flexibility that 
was previously unavailable to a decision-maker that uses 
simulation to select the best system. Whereas indifference- 
zone procedures are concerned with the probability of cor- 
rect selection, we allow for a decision-maker to improve the 
probability of correct selection or the expected opportunity 
cost associated with a potentially incorrect decision. A bud- 
get constraint on the number of replications arises naturally 
in practice, and is readily incorporated into the decision- 
theoretic framework. Although our budget-constrained ver- 
sions of the indifference-zone procedures are not great 
leaps, budget constraints are not found in standard treat- 
ments of indifference-zone procedures. 

Our central tenet is that computer replications should be 
allocated so that the expected value of information from 
the experiments is maximized. To accomplish this, our 
procedures incorporate more first-stage information about 
sample means than indifference-zone procedures. Although 
the procedures are based on suboptimal asymptotic approx- 
imations, the deleterious effect of the approximations seems 
to be outweighed by the use of additional first-stage infor- 
mation. Empirical results indicate that Procedure tS-(A) 
seems to be a particularly effective two-stage procedure. 
The performance of these new procedures for a broader 
range of selection problems warrants further investigation. 

APPENDIX 

PROOF OF THEOREM 1 (OPPORTUNITY COST). We first 
determine the expected total loss p(r). Consider the modi- 
fied loss function: 

o.c. ([i], w) = o, ,([i], w) - ,,. ([k], w) = W[k] 
- 

[i] 

It is well known that adding - .c.([k],w) to the loss 
function does not change the optimal decision (e.g., 
see de Groot 1970). Thus E[S. c.([i], w) I x] = Z[k - [i], 
the difference of the posterior means. Further, [i] is 
selected only if the event s[i] = {z: z[il = maxjzj} 
occurs. Take the expectation over second-stage outcomes 
Xr, add in E;[So.c.([k], w)], to compensate for subtract- 
ing - ..([k], w) earlier, and add the cost crT of the 
experiment to obtain p(r) = crT + E,[maxj w -W[k]] - 

k-1 Pz([li])E[Z[i] -Z[k] I \[i]. 
Now consider the loss for a pairwise comparison 

between systems [i] and [k]. Then 

when Z[k] < Z[i], 

otherwise, 
(26) 

for each x, [i] $ [k]. Because Z[k] -Z[] has a Student-t dis- 
tribution (Equation (12)), a result of Bracken and Schleifer 

(1964) implies that the expected value of this pairwise 
loss is 

{i,k} [A i, k}, ( -[il]- [k])]. 

Define ai = {z I zi > 
z[k]} so that sdi C i,, and let X,i() 

be the indicator function. The lower bound Equation (14) 
is obtained by noting: 

k-I k-I 

EPz(q[i])E[z[i] Z[k] I s =[i]] E[X., (Z)(Z[i] -Z[k])] 
i=l i=l 

k-I 

< E[i (Z)(Z[i] - Z[,]) 
i=1 

k-I 

= EPz(S[i])E[Z[i] - Z[k] I [i]] 
i=l 

k-I 

-- {'i,k} [' L'r{,k}I ([i] -/L,[k])]. 
i=1 

To minimize p*.c (r), consider ri to be continuous and 
take partial derivatives. Noting that d()s)/ds = Iv(s)- 1 
leads to optimality conditions 

(A ) 1/2 2a+A'i, k) ([k] i])2 [( )1/2 ( [i _ )] 
ji, kl "2ar-1 '2aL [(AikJ .1 - kJ] 

C[i] = ~c[i] 
=~ 2(n[i] + r[i])2(a/1[i]) 

for [i] :A [k], and 

k- 1 (~ {i,k ) 1/2 2a+AIi, k} (x[k]]-/X[l)2 
)/2( k-} (Ali,k' lt2 l ,i'k2a-(-1 2ao[(A{i,k}) ([i]- AL[k])] 

c[i] 2(n[k] + r[ki)2(a/Il[k]) 

In the limit ci -+ 0 for all i, we have large ri, and A{i, -k 

Ai,k. Substitute Ai,k for Ai, k} in the optimality conditions 
to obtain the stated number of replications. O 

PROOF OF COROLLARY 1. Let 0 be a Lagrange multiplier 
for the constraint crT = b. Take derivatives to obtain opti- 
mality conditions 

C_('ri,k} )1/2, 
2a+ 

-i, k})([kl- Aji] . 
)2 

-f2 +(A(k )I/2 + ik(k JL]a ) a[(A i.k)/2(P[] - Pk)] 

C~~11j1 +2(n[i+ + r[i])2(oa/lii]) 

for [i] : [k], and 

k-1 
2 

r, {i, } 
(/[k 

]-/x[i]) . r /2/, ,, M 

c, k- (A k}) a -i k)( ] 202a[(A{i,kk) /2(L[i]- P[k])] - OC[k] +' EI (2a{i'k}/'[2 
i=' 2(n[k] + rlk]) (a/Ikl]) 

When b is large, the number of replications of each system 
is large, so that A{i, k - A, k. Let 

7)[k] 
be as in Equation 

(18), substitute the limiting value Ai,k for A{i k}, and replace 
ri with ? to indicate that an asymptotic approximation is 
being made, to obtain 

OC12( + ] +(a/i - 0. 
2(Qr[ij + [i)2(a/P[])-0 

E[Eo*c.([i], w) x] < oZ[k] 
- Z[i] 
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As a consequence, jr[j is therefore related to r[* by 

('r1i + r]) _ jill /C[j]l 

(71[i] + *i)2 3[il]7[il]/C[i 

Recall that crT = b and solve for r[* to obtain the desired 
allocation. E 

PROOF OF THEOREM 2 (0-1 loss). The proof parallels that 
of Theorem 1, except that an extra approximation is made 
for the expected loss. Consider the pairwise loss between 

systems [i] and [k] in order to develop a bound on p(r). 
Add - -1 ([k], w) to the loss function to obtain 

0-l_, ([i], w) = 0-_, ([i], w) - 20-_, ([k], w) 

0 if [i] = [k] or neither [i] nor [k] 
is best, 

-1 if [i] $ [k] and [i] is best, 
1 if [i] # [k] and [k] is best, 

E[_o-,([k[)lx] =0, 

E[-Yo*_([i])x] =p(w[k] best Ix)-p(w[i] best Ix) -1. 

This expected pairwise loss is incurred whenever system [i] 
has a larger overall sample mean than system [k], and this 
occurs with probability D[7{i,kkl'/2 ([[i ] - /[k])]. As r[il, r[k] 
grow without bound, E[SY[_l([i])lx, system [i] is best] 
-- -1 almost surely (correct selection is assured by the 

perfect information obtained from an infinite number of 

replications). In numerical tests, this limit was typically 
approached rather quickly. 

The lower bound of Equation (20) is obtained by adding 
the expected pairwise losses, approximating E[[S_l ([i])x, 
m[i]] by -1 for each pairwise comparison, then adding 
the simulation costs and E;[S_1 ([k], w)]. Differentiate the 
lower bound and approximate Ai, k} as in the proof of 
Theorem 1 to obtain the stated number of replications. 1 
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