141 | | <a name="l00207"></a>00207 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
142 | | <a name="l00208"></a>00208 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>*smp; |
143 | | <a name="l00209"></a>00209 } |
144 | | <a name="l00211"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00211</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
145 | | <a name="l00212"></a>00212 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
146 | | <a name="l00213"></a>00213 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
147 | | <a name="l00214"></a>00214 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
148 | | <a name="l00215"></a>00215 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
149 | | <a name="l00216"></a>00216 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
150 | | <a name="l00217"></a>00217 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
151 | | <a name="l00218"></a>00218 } |
152 | | <a name="l00219"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00219</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
153 | | <a name="l00220"></a>00220 }; |
154 | | <a name="l00221"></a>00221 |
155 | | <a name="l00222"></a>00222 |
156 | | <a name="l00228"></a>00228 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
157 | | <a name="l00229"></a><a class="code" href="classmlnorm.html">00229</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
158 | | <a name="l00231"></a>00231 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
159 | | <a name="l00232"></a>00232 mat A; |
160 | | <a name="l00233"></a>00233 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
161 | | <a name="l00234"></a>00234 <span class="keyword">public</span>: |
162 | | <a name="l00236"></a>00236 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
163 | | <a name="l00238"></a>00238 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
164 | | <a name="l00240"></a>00240 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
165 | | <a name="l00242"></a>00242 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
166 | | <a name="l00244"></a>00244 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
167 | | <a name="l00245"></a>00245 }; |
168 | | <a name="l00246"></a>00246 |
169 | | <a name="l00256"></a><a class="code" href="classmgamma.html">00256</a> <span class="keyword">class </span><a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
170 | | <a name="l00257"></a>00257 <span class="keyword">protected</span>: |
171 | | <a name="l00259"></a><a class="code" href="classmgamma.html#612dbf35c770a780027619aaac2c443e">00259</a> <a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
172 | | <a name="l00261"></a><a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687">00261</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>; |
173 | | <a name="l00263"></a><a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691">00263</a> vec* <a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>; |
174 | | <a name="l00264"></a>00264 |
175 | | <a name="l00265"></a>00265 <span class="keyword">public</span>: |
176 | | <a name="l00267"></a>00267 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
177 | | <a name="l00269"></a>00269 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
178 | | <a name="l00271"></a>00271 vec <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
179 | | <a name="l00273"></a>00273 mat <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
180 | | <a name="l00274"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00274</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
181 | | <a name="l00275"></a>00275 }; |
182 | | <a name="l00276"></a>00276 |
183 | | <a name="l00288"></a><a class="code" href="classmgamma__fix.html">00288</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
184 | | <a name="l00289"></a>00289 <span class="keyword">protected</span>: |
185 | | <a name="l00291"></a><a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6">00291</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>; |
186 | | <a name="l00293"></a><a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0">00293</a> vec <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>; |
187 | | <a name="l00294"></a>00294 <span class="keyword">public</span>: |
188 | | <a name="l00296"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00296</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a> ( rv.count() ) {}; |
189 | | <a name="l00298"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00298</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
190 | | <a name="l00299"></a>00299 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
191 | | <a name="l00300"></a>00300 <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>=l0; |
192 | | <a name="l00301"></a>00301 }; |
193 | | <a name="l00302"></a>00302 |
194 | | <a name="l00303"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00303</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>,pow ( val,<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a> ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
195 | | <a name="l00304"></a>00304 }; |
196 | | <a name="l00305"></a>00305 |
197 | | <a name="l00307"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00307</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
198 | | <a name="l00313"></a><a class="code" href="classeEmp.html">00313</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
199 | | <a name="l00314"></a>00314 <span class="keyword">protected</span> : |
200 | | <a name="l00316"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00316</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
201 | | <a name="l00318"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00318</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
202 | | <a name="l00320"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00320</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
203 | | <a name="l00321"></a>00321 <span class="keyword">public</span>: |
204 | | <a name="l00323"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00323</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
205 | | <a name="l00325"></a>00325 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
206 | | <a name="l00327"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00327</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
207 | | <a name="l00329"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00329</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
208 | | <a name="l00331"></a>00331 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
209 | | <a name="l00333"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00333</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
210 | | <a name="l00335"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00335</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
211 | | <a name="l00336"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00336</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
212 | | <a name="l00337"></a>00337 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
213 | | <a name="l00338"></a>00338 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
214 | | <a name="l00339"></a>00339 <span class="keywordflow">return</span> pom; |
215 | | <a name="l00340"></a>00340 } |
216 | | <a name="l00341"></a>00341 }; |
217 | | <a name="l00342"></a>00342 |
218 | | <a name="l00343"></a>00343 |
| 141 | <a name="l00207"></a>00207 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
| 142 | <a name="l00208"></a>00208 <span class="preprocessor"> #pragma omp critical</span> |
| 143 | <a name="l00209"></a>00209 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
| 144 | <a name="l00210"></a>00210 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+elem_mult(<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>,smp); |
| 145 | <a name="l00211"></a>00211 } |
| 146 | <a name="l00213"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00213</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
| 147 | <a name="l00214"></a>00214 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
| 148 | <a name="l00215"></a>00215 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
| 149 | <a name="l00216"></a>00216 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
| 150 | <a name="l00217"></a>00217 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
| 151 | <a name="l00218"></a>00218 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
| 152 | <a name="l00219"></a>00219 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
| 153 | <a name="l00220"></a>00220 } |
| 154 | <a name="l00221"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00221</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
| 155 | <a name="l00222"></a>00222 }; |
| 156 | <a name="l00223"></a>00223 |
| 157 | <a name="l00224"></a>00224 |
| 158 | <a name="l00230"></a>00230 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 159 | <a name="l00231"></a><a class="code" href="classmlnorm.html">00231</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
| 160 | <a name="l00233"></a>00233 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 161 | <a name="l00234"></a>00234 mat A; |
| 162 | <a name="l00235"></a>00235 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
| 163 | <a name="l00236"></a>00236 <span class="keyword">public</span>: |
| 164 | <a name="l00238"></a>00238 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
| 165 | <a name="l00240"></a>00240 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
| 166 | <a name="l00242"></a>00242 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
| 167 | <a name="l00244"></a>00244 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
| 168 | <a name="l00246"></a>00246 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
| 169 | <a name="l00247"></a>00247 }; |
| 170 | <a name="l00248"></a>00248 |
| 171 | <a name="l00258"></a><a class="code" href="classmgamma.html">00258</a> <span class="keyword">class </span><a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
| 172 | <a name="l00259"></a>00259 <span class="keyword">protected</span>: |
| 173 | <a name="l00261"></a><a class="code" href="classmgamma.html#612dbf35c770a780027619aaac2c443e">00261</a> <a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 174 | <a name="l00263"></a><a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687">00263</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>; |
| 175 | <a name="l00265"></a><a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691">00265</a> vec* <a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>; |
| 176 | <a name="l00266"></a>00266 |
| 177 | <a name="l00267"></a>00267 <span class="keyword">public</span>: |
| 178 | <a name="l00269"></a>00269 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
| 179 | <a name="l00271"></a>00271 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
| 180 | <a name="l00273"></a>00273 vec <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
| 181 | <a name="l00275"></a>00275 mat <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
| 182 | <a name="l00276"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00276</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
| 183 | <a name="l00277"></a>00277 }; |
| 184 | <a name="l00278"></a>00278 |
| 185 | <a name="l00290"></a><a class="code" href="classmgamma__fix.html">00290</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
| 186 | <a name="l00291"></a>00291 <span class="keyword">protected</span>: |
| 187 | <a name="l00293"></a><a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6">00293</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>; |
| 188 | <a name="l00295"></a><a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0">00295</a> vec <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>; |
| 189 | <a name="l00296"></a>00296 <span class="keyword">public</span>: |
| 190 | <a name="l00298"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00298</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a> ( rv.count() ) {}; |
| 191 | <a name="l00300"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00300</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
| 192 | <a name="l00301"></a>00301 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
| 193 | <a name="l00302"></a>00302 <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>=l0; |
| 194 | <a name="l00303"></a>00303 }; |
| 195 | <a name="l00304"></a>00304 |
| 196 | <a name="l00305"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00305</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>,pow ( val,<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a> ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
| 197 | <a name="l00306"></a>00306 }; |
| 198 | <a name="l00307"></a>00307 |
| 199 | <a name="l00309"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00309</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 200 | <a name="l00315"></a><a class="code" href="classeEmp.html">00315</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
| 201 | <a name="l00316"></a>00316 <span class="keyword">protected</span> : |
| 202 | <a name="l00318"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00318</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
| 203 | <a name="l00320"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00320</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
| 204 | <a name="l00322"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00322</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
| 205 | <a name="l00323"></a>00323 <span class="keyword">public</span>: |
| 206 | <a name="l00325"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00325</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
| 207 | <a name="l00327"></a>00327 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
| 208 | <a name="l00329"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00329</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
| 209 | <a name="l00331"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00331</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
| 210 | <a name="l00333"></a>00333 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
| 211 | <a name="l00335"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00335</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
| 212 | <a name="l00337"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00337</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
| 213 | <a name="l00338"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00338</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
| 214 | <a name="l00339"></a>00339 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
| 215 | <a name="l00340"></a>00340 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
| 216 | <a name="l00341"></a>00341 <span class="keywordflow">return</span> pom; |
| 217 | <a name="l00342"></a>00342 } |
| 218 | <a name="l00343"></a>00343 }; |
| 219 | <a name="l00344"></a>00344 |
220 | | <a name="l00346"></a>00346 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
221 | | <a name="l00347"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00347</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
222 | | <a name="l00348"></a>00348 |
223 | | <a name="l00349"></a>00349 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
224 | | <a name="l00350"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00350</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
225 | | <a name="l00351"></a>00351 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
226 | | <a name="l00352"></a>00352 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
227 | | <a name="l00353"></a>00353 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
228 | | <a name="l00354"></a>00354 }; |
229 | | <a name="l00355"></a>00355 |
230 | | <a name="l00356"></a>00356 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
231 | | <a name="l00357"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00357</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
232 | | <a name="l00358"></a>00358 <span class="comment">//</span> |
233 | | <a name="l00359"></a>00359 }; |
234 | | <a name="l00360"></a>00360 |
235 | | <a name="l00361"></a>00361 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
236 | | <a name="l00362"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00362</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
237 | | <a name="l00363"></a>00363 <span class="comment">//</span> |
238 | | <a name="l00364"></a>00364 }; |
239 | | <a name="l00365"></a>00365 |
240 | | <a name="l00366"></a>00366 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
241 | | <a name="l00367"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00367</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
242 | | <a name="l00368"></a>00368 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
243 | | <a name="l00369"></a>00369 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
244 | | <a name="l00370"></a>00370 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
245 | | <a name="l00371"></a>00371 |
246 | | <a name="l00372"></a>00372 smp += <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
247 | | <a name="l00373"></a>00373 <span class="keywordflow">return</span> smp; |
248 | | <a name="l00374"></a>00374 }; |
249 | | <a name="l00375"></a>00375 |
250 | | <a name="l00376"></a>00376 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
251 | | <a name="l00377"></a><a class="code" href="classenorm.html#60f0f3bfa53d6e65843eea9532b16d36">00377</a> mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
252 | | <a name="l00378"></a>00378 mat X ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
253 | | <a name="l00379"></a>00379 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
254 | | <a name="l00380"></a>00380 vec pom; |
255 | | <a name="l00381"></a>00381 <span class="keywordtype">int</span> i; |
256 | | <a name="l00382"></a>00382 |
257 | | <a name="l00383"></a>00383 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
258 | | <a name="l00384"></a>00384 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
259 | | <a name="l00385"></a>00385 pom = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
260 | | <a name="l00386"></a>00386 pom +=<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
261 | | <a name="l00387"></a>00387 X.set_col ( i, pom ); |
262 | | <a name="l00388"></a>00388 } |
263 | | <a name="l00389"></a>00389 |
264 | | <a name="l00390"></a>00390 <span class="keywordflow">return</span> X; |
265 | | <a name="l00391"></a>00391 }; |
266 | | <a name="l00392"></a>00392 |
267 | | <a name="l00393"></a>00393 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
268 | | <a name="l00394"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00394</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
269 | | <a name="l00395"></a>00395 <span class="keywordtype">double</span> pdfl,e; |
270 | | <a name="l00396"></a>00396 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( val ); |
271 | | <a name="l00397"></a>00397 e = exp ( pdfl ); |
272 | | <a name="l00398"></a>00398 <span class="keywordflow">return</span> e; |
273 | | <a name="l00399"></a>00399 }; |
274 | | <a name="l00400"></a>00400 |
275 | | <a name="l00401"></a>00401 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
276 | | <a name="l00402"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00402</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
277 | | <a name="l00403"></a>00403 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
278 | | <a name="l00404"></a>00404 <span class="keywordflow">return</span> -0.5* ( +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ) - <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a>(); |
279 | | <a name="l00405"></a>00405 }; |
280 | | <a name="l00406"></a>00406 |
281 | | <a name="l00407"></a>00407 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
282 | | <a name="l00408"></a><a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8">00408</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
283 | | <a name="l00409"></a>00409 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
284 | | <a name="l00410"></a>00410 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet()); |
285 | | <a name="l00411"></a>00411 }; |
286 | | <a name="l00412"></a>00412 |
287 | | <a name="l00413"></a>00413 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
288 | | <a name="l00414"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00414</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>(<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>()) { |
289 | | <a name="l00415"></a>00415 } |
290 | | <a name="l00416"></a>00416 |
291 | | <a name="l00417"></a>00417 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
292 | | <a name="l00418"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00418</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
293 | | <a name="l00419"></a>00419 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
294 | | <a name="l00420"></a>00420 A = A0; |
295 | | <a name="l00421"></a>00421 } |
296 | | <a name="l00422"></a>00422 |
297 | | <a name="l00423"></a>00423 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
298 | | <a name="l00424"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00424</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
299 | | <a name="l00425"></a>00425 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
300 | | <a name="l00426"></a>00426 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
301 | | <a name="l00427"></a>00427 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
302 | | <a name="l00428"></a>00428 <span class="keywordflow">return</span> smp; |
303 | | <a name="l00429"></a>00429 } |
304 | | <a name="l00430"></a>00430 |
305 | | <a name="l00431"></a>00431 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
306 | | <a name="l00432"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00432</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
307 | | <a name="l00433"></a>00433 <span class="keywordtype">int</span> i; |
308 | | <a name="l00434"></a>00434 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
309 | | <a name="l00435"></a>00435 mat Smp ( dim,n ); |
310 | | <a name="l00436"></a>00436 vec smp ( dim ); |
311 | | <a name="l00437"></a>00437 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
312 | | <a name="l00438"></a>00438 |
313 | | <a name="l00439"></a>00439 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
314 | | <a name="l00440"></a>00440 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
315 | | <a name="l00441"></a>00441 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
316 | | <a name="l00442"></a>00442 Smp.set_col ( i ,smp ); |
317 | | <a name="l00443"></a>00443 } |
318 | | <a name="l00444"></a>00444 |
319 | | <a name="l00445"></a>00445 <span class="keywordflow">return</span> Smp; |
320 | | <a name="l00446"></a>00446 } |
321 | | <a name="l00447"></a>00447 |
322 | | <a name="l00448"></a>00448 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
323 | | <a name="l00449"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00449</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
324 | | <a name="l00450"></a>00450 _mu = A*cond; |
325 | | <a name="l00451"></a>00451 <span class="comment">//R is already assigned;</span> |
326 | | <a name="l00452"></a>00452 } |
327 | | <a name="l00453"></a>00453 |
| 221 | <a name="l00347"></a>00347 |
| 222 | <a name="l00348"></a>00348 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 223 | <a name="l00349"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00349</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
| 224 | <a name="l00350"></a>00350 |
| 225 | <a name="l00351"></a>00351 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 226 | <a name="l00352"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00352</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
| 227 | <a name="l00353"></a>00353 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
| 228 | <a name="l00354"></a>00354 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
| 229 | <a name="l00355"></a>00355 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
| 230 | <a name="l00356"></a>00356 }; |
| 231 | <a name="l00357"></a>00357 |
| 232 | <a name="l00358"></a>00358 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 233 | <a name="l00359"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00359</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
| 234 | <a name="l00360"></a>00360 <span class="comment">//</span> |
| 235 | <a name="l00361"></a>00361 }; |
| 236 | <a name="l00362"></a>00362 |
| 237 | <a name="l00363"></a>00363 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 238 | <a name="l00364"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00364</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
| 239 | <a name="l00365"></a>00365 <span class="comment">//</span> |
| 240 | <a name="l00366"></a>00366 }; |
| 241 | <a name="l00367"></a>00367 |
| 242 | <a name="l00368"></a>00368 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 243 | <a name="l00369"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00369</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
| 244 | <a name="l00370"></a>00370 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
| 245 | <a name="l00371"></a>00371 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
| 246 | <a name="l00372"></a>00372 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 247 | <a name="l00373"></a>00373 |
| 248 | <a name="l00374"></a>00374 smp += <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
| 249 | <a name="l00375"></a>00375 <span class="keywordflow">return</span> smp; |
| 250 | <a name="l00376"></a>00376 }; |
| 251 | <a name="l00377"></a>00377 |
| 252 | <a name="l00378"></a>00378 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 253 | <a name="l00379"></a><a class="code" href="classenorm.html#60f0f3bfa53d6e65843eea9532b16d36">00379</a> mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
| 254 | <a name="l00380"></a>00380 mat X ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
| 255 | <a name="l00381"></a>00381 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
| 256 | <a name="l00382"></a>00382 vec pom; |
| 257 | <a name="l00383"></a>00383 <span class="keywordtype">int</span> i; |
| 258 | <a name="l00384"></a>00384 |
| 259 | <a name="l00385"></a>00385 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
| 260 | <a name="l00386"></a>00386 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
| 261 | <a name="l00387"></a>00387 pom = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 262 | <a name="l00388"></a>00388 pom +=<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
| 263 | <a name="l00389"></a>00389 X.set_col ( i, pom ); |
| 264 | <a name="l00390"></a>00390 } |
| 265 | <a name="l00391"></a>00391 |
| 266 | <a name="l00392"></a>00392 <span class="keywordflow">return</span> X; |
| 267 | <a name="l00393"></a>00393 }; |
| 268 | <a name="l00394"></a>00394 |
| 269 | <a name="l00395"></a>00395 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 270 | <a name="l00396"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00396</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 271 | <a name="l00397"></a>00397 <span class="keywordtype">double</span> pdfl,e; |
| 272 | <a name="l00398"></a>00398 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( val ); |
| 273 | <a name="l00399"></a>00399 e = exp ( pdfl ); |
| 274 | <a name="l00400"></a>00400 <span class="keywordflow">return</span> e; |
| 275 | <a name="l00401"></a>00401 }; |
| 276 | <a name="l00402"></a>00402 |
| 277 | <a name="l00403"></a>00403 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 278 | <a name="l00404"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00404</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 279 | <a name="l00405"></a>00405 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 280 | <a name="l00406"></a>00406 <span class="keywordflow">return</span> -0.5* ( +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ) - <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 281 | <a name="l00407"></a>00407 }; |
| 282 | <a name="l00408"></a>00408 |
| 283 | <a name="l00409"></a>00409 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 284 | <a name="l00410"></a><a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8">00410</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
| 285 | <a name="l00411"></a>00411 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 286 | <a name="l00412"></a>00412 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet()); |
| 287 | <a name="l00413"></a>00413 }; |
| 288 | <a name="l00414"></a>00414 |
| 289 | <a name="l00415"></a>00415 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 290 | <a name="l00416"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00416</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>(<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>()) { <a class="code" href="classmpdf.html#7aa894208a32f3487827df6d5054424c" title="pointer to internal epdf">ep</a> =&<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 291 | <a name="l00417"></a>00417 } |
| 292 | <a name="l00418"></a>00418 |
| 293 | <a name="l00419"></a>00419 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 294 | <a name="l00420"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00420</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
| 295 | <a name="l00421"></a>00421 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
| 296 | <a name="l00422"></a>00422 A = A0; |
| 297 | <a name="l00423"></a>00423 } |
| 298 | <a name="l00424"></a>00424 |
| 299 | <a name="l00425"></a>00425 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 300 | <a name="l00426"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00426</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
| 301 | <a name="l00427"></a>00427 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
| 302 | <a name="l00428"></a>00428 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
| 303 | <a name="l00429"></a>00429 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
| 304 | <a name="l00430"></a>00430 <span class="keywordflow">return</span> smp; |
| 305 | <a name="l00431"></a>00431 } |
| 306 | <a name="l00432"></a>00432 |
| 307 | <a name="l00433"></a>00433 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 308 | <a name="l00434"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00434</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
| 309 | <a name="l00435"></a>00435 <span class="keywordtype">int</span> i; |
| 310 | <a name="l00436"></a>00436 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
| 311 | <a name="l00437"></a>00437 mat Smp ( dim,n ); |
| 312 | <a name="l00438"></a>00438 vec smp ( dim ); |
| 313 | <a name="l00439"></a>00439 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
| 314 | <a name="l00440"></a>00440 |
| 315 | <a name="l00441"></a>00441 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
| 316 | <a name="l00442"></a>00442 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
| 317 | <a name="l00443"></a>00443 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
| 318 | <a name="l00444"></a>00444 Smp.set_col ( i ,smp ); |
| 319 | <a name="l00445"></a>00445 } |
| 320 | <a name="l00446"></a>00446 |
| 321 | <a name="l00447"></a>00447 <span class="keywordflow">return</span> Smp; |
| 322 | <a name="l00448"></a>00448 } |
| 323 | <a name="l00449"></a>00449 |
| 324 | <a name="l00450"></a>00450 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 325 | <a name="l00451"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00451</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
| 326 | <a name="l00452"></a>00452 _mu = A*cond; |
| 327 | <a name="l00453"></a>00453 <span class="comment">//R is already assigned;</span> |
| 328 | <a name="l00454"></a>00454 } |