| 31 | | const int max_window_size = 121; |
| 32 | | |
| 33 | | /* |
| 34 | | HDDEDATA CALLBACK DdeCallback( |
| 35 | | UINT uType, // Transaction type. |
| 36 | | UINT uFmt, // Clipboard data format. |
| 37 | | HCONV hconv, // Handle to the conversation. |
| 38 | | HSZ hsz1, // Handle to a string. |
| 39 | | HSZ hsz2, // Handle to a string. |
| 40 | | HDDEDATA hdata, // Handle to a global memory object. |
| 41 | | DWORD dwData1, // Transaction-specific data. |
| 42 | | DWORD dwData2) // Transaction-specific data. |
| 43 | | { |
| 44 | | return 0; |
| 45 | | } |
| 46 | | |
| 47 | | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
| 48 | | { |
| 49 | | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
| 50 | | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
| 51 | | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
| 52 | | if (hData==NULL) |
| 53 | | { |
| 54 | | printf("Request failed: %s\n", szItem); |
| 55 | | } |
| 56 | | |
| 57 | | if (hData==0) |
| 58 | | { |
| 59 | | printf("Request failed: %s\n", szItem); |
| 60 | | } |
| 61 | | } |
| 62 | | |
| 63 | | DWORD WINAPI ThrdFunc( LPVOID n ) |
| 64 | | { |
| 65 | | return 0; |
| 66 | | } |
| 67 | | */ |
| | 31 | const int max_window_size = 30; |
| 343 | | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
| 344 | | {// prechadza rozne typy kanalov, a poctu regresorov |
| 345 | | for(int window_size = max_window_size-1;window_size < max_window_size;window_size++) |
| 346 | | { |
| 347 | | //models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
| 348 | | //models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
| 349 | | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
| 350 | | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
| 351 | | } |
| 352 | | |
| 353 | | //set<pair<int,int>> empty_list; |
| 354 | | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
| 355 | | } |
| 356 | | |
| 357 | | mat result_lognc; |
| 358 | | // mat result_preds; |
| 373 | | //pocet stlpcov data_matrix je pocet casovych krokov |
| 374 | | vec cur_res_lognc; |
| 375 | | // vec preds; |
| 376 | | vector<string> nazvy; |
| 377 | | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
| 378 | | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
| 379 | | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
| 380 | | |
| 381 | | cout << "Updated." << endl; |
| 382 | | //if (time = max_model_order) nazvy.push_back(models.model_ref]);// ako by som mohol dostat nazov modelu? |
| 383 | | |
| 384 | | if((*model_ref)->my_rarx!=NULL) //vklada normalizacni faktor do cur_res_lognc |
| 385 | | { |
| 386 | | cout << "Maxlik vertex:" << (*model_ref)->my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
| 387 | | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_rarx->posterior->_ll()); |
| 388 | | } |
| 389 | | else |
| 390 | | { |
| 391 | | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_arx->_ll()); |
| 392 | | } |
| 393 | | |
| 394 | | if(time == max_window_size-1) |
| 395 | | { |
| 396 | | //*********************** |
| 397 | | int sample_size = 100000; |
| 398 | | //*********************** |
| 399 | | |
| 400 | | pair<vec,mat> samples; |
| 401 | | if((*model_ref)->my_arx!=NULL) |
| | 302 | |
| | 303 | while(data_matrix.rows()!=0) |
| | 304 | { |
| | 305 | for(int i=0;i<models.size();i++) |
| | 306 | { |
| | 307 | delete models[i]; |
| | 308 | } |
| | 309 | |
| | 310 | models.clear(); |
| | 311 | models.push_back(new model(model_type,true,false,max_window_size,0,&data_matrix)); |
| | 312 | models.push_back(new model(model_type,false,false,max_window_size,0,&data_matrix)); |
| | 313 | |
| | 314 | for(int time = max_model_order;time<max_window_size;time++) //time<data_matrix.cols() |
| | 315 | { |
| | 316 | vec cur_res_lognc; |
| | 317 | |
| | 318 | vector<string> nazvy; |
| | 319 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
| | 320 | { |
| | 321 | (*model_ref)->data_update(time); |
| | 322 | |
| | 323 | cout << "Updated:" << time << endl; |
| | 324 | |
| | 325 | if(time == max_window_size-1) |
| 406 | | else |
| 407 | | { |
| 408 | | samples = (*model_ref)->my_rarx->posterior->sample(sample_size,true); |
| 409 | | } |
| 410 | | |
| 411 | | char fstring[80]; |
| 412 | | strcpy(fstring,file_string); |
| 413 | | strcat(fstring,(*model_ref)->name); |
| 414 | | strcat(fstring,".txt"); |
| 415 | | |
| 416 | | //cout << samples.first << endl; |
| 417 | | |
| 418 | | myfilew.open(fstring,ios::app); |
| 419 | | |
| 420 | | /* |
| 421 | | for(int i = 0;i<samples.first.size();i++) |
| 422 | | { |
| 423 | | myfilew << samples.first.get(i) << ","; |
| 424 | | } |
| 425 | | myfilew << endl; |
| 426 | | */ |
| 427 | | |
| 428 | | for(int j = 0;j<samples.second.rows()+1;j++) |
| 429 | | { |
| 430 | | for(int i = 0;i<samples.second.cols();i++) |
| 431 | | { |
| 432 | | if(j!=samples.second.rows()) |
| 433 | | { |
| 434 | | myfilew << samples.second.get(j,i) << ","; |
| 435 | | } |
| 436 | | /* |
| 437 | | else |
| 438 | | { |
| 439 | | myfilew << "0,"; |
| 440 | | } |
| 441 | | */ |
| 442 | | } |
| 443 | | myfilew << endl; |
| 444 | | } |
| 445 | | |
| 446 | | cout << "*************************************" << endl; |
| 447 | | |
| 448 | | myfilew.close(); |
| 449 | | } |
| 450 | | |
| 451 | | /* // PREDICTIONS |
| 452 | | pair<vec,vec> predictions = (*model_ref)->predict(500,time,&LapRNG); |
| 453 | | |
| 454 | | cout << predictions.first << endl << predictions.second << endl; |
| 455 | | |
| 456 | | double avg_prediction = (predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size())); |
| 457 | | |
| 458 | | (*model_ref)->predictions.ins((*model_ref)->predictions.size(),avg_prediction); |
| 459 | | |
| 460 | | myfilew.open(fstring,ios::app); |
| 461 | | myfilew << avg_prediction << ","; |
| 462 | | myfilew.close(); |
| 463 | | */ |
| 464 | | |
| 465 | | //preds.ins(0,data_matrix.get(0,time+1)); |
| 466 | | } |
| 467 | | |
| 468 | | |
| 469 | | /* // REAL PRICE |
| 470 | | myfilew.open(fstring,ios::app); |
| 471 | | myfilew << data_matrix.get(0,time+1) << endl; |
| 472 | | myfilew.close(); |
| 473 | | */ |
| 474 | | |
| 475 | | result_lognc.ins_col(result_lognc.cols(),cur_res_lognc); |
| 476 | | // result_preds.ins_col(result_preds.cols(),preds); |
| 477 | | |
| 478 | | // cout << "Updated." << endl; |
| 479 | | |
| 480 | | /* |
| 481 | | myfilew.open(fstring,ios::app); |
| 482 | | |
| 483 | | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
| 484 | | |
| 485 | | if(time == max_model_order) |
| 486 | | { |
| 487 | | for(int i = 0;i<cur_res_lognc.size();i++) |
| 488 | | { |
| 489 | | for(set<pair<int,int>>::iterator ar_ref = models[i]->ar_components.begin();ar_ref != models[i]->ar_components.end();ar_ref++) |
| 490 | | { |
| 491 | | myfilew << (*ar_ref).second << (*ar_ref).first; |
| 492 | | } |
| 493 | | |
| 494 | | myfilew << "."; |
| 495 | | |
| 496 | | if(models[i]->my_arx == NULL) |
| 497 | | { |
| 498 | | myfilew << "1"; |
| 499 | | } |
| 500 | | else |
| 501 | | { |
| 502 | | myfilew << "0"; |
| 503 | | } |
| 504 | | |
| 505 | | if(models[i]->has_constant) |
| 506 | | { |
| 507 | | myfilew << "1"; |
| 508 | | } |
| 509 | | else |
| 510 | | { |
| 511 | | myfilew << "0"; |
| 512 | | } |
| 513 | | |
| 514 | | myfilew << ","; |
| 515 | | } |
| 516 | | |
| 517 | | myfilew << endl; |
| 518 | | } |
| 519 | | |
| 520 | | |
| 521 | | // for(int i = 0;i<cur_res_lognc.size();i++) |
| 522 | | // { |
| 523 | | // myfilew << cur_res_lognc[i] << ' ';//zmenil som ciarku ze medzeru |
| 524 | | // } |
| 525 | | |
| 526 | | |
| 527 | | myfilew << endl; |
| 528 | | |
| 529 | | myfilew.close(); |
| 530 | | */ |
| 531 | | |
| 532 | | } |
| 533 | | |
| 534 | | |
| 535 | | |
| 536 | | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
| 537 | | // with maximization of logarithm of one-step ahead wealth. |
| 538 | | |
| 539 | | |
| 540 | | |
| 541 | | /* |
| 542 | | cout << "One experiment finished." << endl; |
| 543 | | |
| 544 | | ofstream myfile; |
| 545 | | myfile.open("c:\\robust_ar1.txt",ios::app); |
| 546 | | myfile << endl; |
| 547 | | myfile.close(); |
| 548 | | |
| 549 | | myfile.open("c:\\robust_ar2.txt",ios::app); |
| 550 | | myfile << endl; |
| 551 | | myfile.close();*/ |
| 552 | | |
| 553 | | |
| 554 | | //emlig* emlig1 = new emlig(emlig_size); |
| 555 | | |
| 556 | | //emlig1->step_me(0); |
| 557 | | //emlig* emlig2 = new emlig(emlig_size); |
| 558 | | |
| 559 | | /* |
| 560 | | emlig1->set_correction_factors(4); |
| 561 | | |
| 562 | | for(int j = 0;j<emlig1->correction_factors.size();j++) |
| 563 | | { |
| 564 | | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
| 565 | | { |
| 566 | | cout << j << " "; |
| 567 | | |
| 568 | | for(int i=0;i<(*vec_ref).size();i++) |
| 569 | | { |
| 570 | | cout << (*vec_ref)[i]; |
| 571 | | } |
| 572 | | |
| 573 | | cout << endl; |
| 574 | | } |
| 575 | | }*/ |
| 576 | | |
| 577 | | /* |
| 578 | | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
| 579 | | |
| 580 | | emlig1->add_condition(condition5); |
| 581 | | //emlig1->step_me(0); |
| 582 | | |
| 583 | | |
| 584 | | vec condition1a = "-1.0 1.02 0.5"; |
| 585 | | //vec condition1b = "1.0 1.0 1.01"; |
| 586 | | emlig1->add_condition(condition1a); |
| 587 | | //emlig2->add_condition(condition1b); |
| 588 | | |
| 589 | | vec condition2a = "-0.3 1.7 1.5"; |
| 590 | | //vec condition2b = "-1.0 1.0 1.0"; |
| 591 | | emlig1->add_condition(condition2a); |
| 592 | | //emlig2->add_condition(condition2b); |
| 593 | | |
| 594 | | vec condition3a = "0.5 -1.01 1.0"; |
| 595 | | //vec condition3b = "0.5 -1.01 1.0"; |
| 596 | | |
| 597 | | emlig1->add_condition(condition3a); |
| 598 | | //emlig2->add_condition(condition3b); |
| 599 | | |
| 600 | | vec condition4a = "-0.5 -1.0 1.0"; |
| 601 | | //vec condition4b = "-0.5 -1.0 1.0"; |
| 602 | | |
| 603 | | emlig1->add_condition(condition4a); |
| 604 | | //cout << "************************************************" << endl; |
| 605 | | //emlig2->add_condition(condition4b); |
| 606 | | //cout << "************************************************" << endl; |
| 607 | | |
| 608 | | //cout << emlig1->minimal_vertex->get_coordinates(); |
| 609 | | |
| 610 | | //emlig1->remove_condition(condition3a); |
| 611 | | //emlig1->step_me(0); |
| 612 | | //emlig1->remove_condition(condition2a); |
| 613 | | //emlig1->remove_condition(condition1a); |
| 614 | | //emlig1->remove_condition(condition5); |
| 615 | | |
| 616 | | |
| 617 | | //emlig1->step_me(0); |
| 618 | | //emlig2->step_me(0); |
| 619 | | |
| 620 | | |
| 621 | | // DA SE POUZIT PRO VYPIS DO SOUBORU |
| 622 | | // emlig1->step_me(0); |
| 623 | | |
| 624 | | //emlig1->remove_condition(condition1); |
| 625 | | |
| 626 | | |
| 627 | | |
| 628 | | |
| 629 | | |
| 630 | | /* |
| 631 | | for(int i = 0;i<100;i++) |
| 632 | | { |
| 633 | | cout << endl << "Step:" << i << endl; |
| 634 | | |
| 635 | | double condition[emlig_size+1]; |
| 636 | | |
| 637 | | for(int k = 0;k<=emlig_size;k++) |
| 638 | | { |
| 639 | | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
| 640 | | } |
| 641 | | |
| 642 | | |
| 643 | | vec* condition_vec = new vec(condition,emlig_size+1); |
| 644 | | emlig1->add_condition(*condition_vec); |
| 645 | | |
| 646 | | /* |
| 647 | | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
| 648 | | { |
| 649 | | cout << ((toprow*)toprow_ref)->probability << endl; |
| 650 | | } |
| 651 | | */ |
| 652 | | /* |
| 653 | | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
| 654 | | |
| 655 | | /* |
| 656 | | if(i-emlig1->number_of_parameters >= 0) |
| 657 | | { |
| 658 | | pause(30); |
| 659 | | } |
| 660 | | */ |
| 661 | | |
| 662 | | // emlig1->step_me(i); |
| 663 | | |
| 664 | | /* |
| 665 | | vector<int> sizevector; |
| 666 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 667 | | { |
| 668 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 669 | | } |
| 670 | | */ |
| 671 | | //} |
| 672 | | |
| 673 | | |
| 674 | | |
| 675 | | |
| 676 | | /* |
| 677 | | emlig1->step_me(1); |
| 678 | | |
| 679 | | vec condition = "2.0 0.0 1.0"; |
| 680 | | |
| 681 | | emlig1->add_condition(condition); |
| 682 | | |
| 683 | | vector<int> sizevector; |
| 684 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 685 | | { |
| 686 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 687 | | } |
| 688 | | |
| 689 | | emlig1->step_me(2); |
| 690 | | |
| 691 | | condition = "2.0 1.0 0.0"; |
| 692 | | |
| 693 | | emlig1->add_condition(condition); |
| 694 | | |
| 695 | | sizevector.clear(); |
| 696 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 697 | | { |
| 698 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 699 | | } |
| 700 | | */ |
| | 353 | } |
| | 354 | } |
| | 355 | |
| | 356 | data_matrix.del_row(0); |
| | 357 | } |
| | 358 | |
| | 359 | |
| | 360 | |
| | 361 | |