| 377 | | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
| 378 | | |
| 379 | | vector<vector<string>> strings; |
| 380 | | |
| 381 | | char* file_string = "C:\\CD2"; // "C:\\dataADClosePercDiff"; // |
| 382 | | |
| 383 | | char dfstring[80]; |
| 384 | | strcpy(dfstring,file_string); |
| 385 | | strcat(dfstring,".txt"); |
| 386 | | |
| 387 | | |
| 388 | | mat data_matrix; |
| 389 | | ifstream myfile(dfstring); |
| 390 | | if (myfile.is_open()) |
| 391 | | { |
| 392 | | string line; |
| 393 | | while(getline(myfile,line)) |
| 394 | | { |
| 395 | | vec data_vector; |
| 396 | | while(line.find(',') != string::npos) //zmenil som ciarku za medzeru |
| 397 | | { |
| 398 | | //line.erase(0,1); // toto som sem pridal |
| 399 | | int loc2 = line.find('\n'); |
| 400 | | int loc = line.find(','); |
| 401 | | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
| 402 | | line.erase(0,loc+1); |
| 403 | | } |
| 404 | | |
| 405 | | data_matrix.ins_row(data_matrix.rows(),data_vector); |
| 406 | | } |
| 407 | | |
| 408 | | myfile.close(); |
| 409 | | } |
| 410 | | else |
| 411 | | { |
| 412 | | cout << "Can't open data file!" << endl; |
| 413 | | } |
| 414 | | |
| 415 | | //konec nacitavania dat |
| 416 | | set<set<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); //volanie funkce kde robi kombinace modelov |
| 417 | | //to priradime do model_types, data_matrix.row urcuje pocet kanalov dat |
| 418 | | vector<model*> models; |
| 419 | | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
| 420 | | {// prechadza rozne typy kanalov, a poctu regresorov |
| 421 | | for(int window_size = max_window_size-1;window_size < max_window_size;window_size++) |
| 422 | | { |
| 423 | | models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
| 424 | | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
| 425 | | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
| 426 | | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
| 427 | | } |
| 428 | | |
| 429 | | //set<pair<int,int>> empty_list; |
| 430 | | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
| 431 | | } |
| 432 | | |
| 433 | | mat result_lognc; |
| 434 | | // mat result_preds; |
| 435 | | |
| 436 | | ofstream myfilew; |
| 437 | | char fstring[80]; |
| 438 | | strcpy(fstring,file_string); |
| 439 | | //strcat(fstring,"lognc.txt"); |
| 440 | | strcat(fstring,"preds.txt"); |
| 441 | | |
| 442 | | for(int time = max_model_order;time<data_matrix.cols();time++) //time<data_matrix.cols() |
| 443 | | { |
| 444 | | cout << "Steps: " << time << endl; |
| | 416 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
| | 417 | |
| | 418 | char* folder_string = "C:\\RobustExperiments\\"; // "C:\\dataADClosePercDiff"; // |
| | 419 | char* data_folder = "data\\"; |
| | 420 | char* results_folder = "results\\"; |
| | 421 | |
| | 422 | char dfstring[150]; |
| | 423 | strcpy(dfstring,folder_string); |
| | 424 | strcat(dfstring,data_folder); |
| | 425 | strcat(dfstring,commodity); |
| | 426 | vector<char*> files = listFiles(dfstring); |
| | 427 | |
| | 428 | for(int contract=0;contract<files.size();contract++) |
| | 429 | { |
| | 430 | char *cdf_str = new char[strlen(dfstring) + 1]; |
| | 431 | strcpy(cdf_str, dfstring); |
| | 432 | strcat(cdf_str,files[contract]); |
| | 433 | |
| | 434 | mat data_matrix; |
| | 435 | ifstream myfile(cdf_str); |
| | 436 | if (myfile.is_open()) |
| | 437 | { |
| | 438 | string line; |
| | 439 | while(getline(myfile,line)) |
| | 440 | { |
| | 441 | vec data_vector; |
| | 442 | while(line.find(',') != string::npos) //zmenil som ciarku za medzeru |
| | 443 | { |
| | 444 | //line.erase(0,1); // toto som sem pridal |
| | 445 | int loc2 = line.find('\n'); |
| | 446 | int loc = line.find(','); |
| | 447 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
| | 448 | line.erase(0,loc+1); |
| | 449 | } |
| | 450 | |
| | 451 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
| | 452 | } |
| | 453 | |
| | 454 | myfile.close(); |
| | 455 | } |
| | 456 | else |
| | 457 | { |
| | 458 | cout << "Can't open data file!" << endl; |
| | 459 | } |
| | 460 | |
| | 461 | //konec nacitavania dat |
| | 462 | set<set<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); //volanie funkce kde robi kombinace modelov |
| | 463 | //to priradime do model_types, data_matrix.row urcuje pocet kanalov dat |
| | 464 | vector<model*> models; |
| | 465 | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
| | 466 | {// prechadza rozne typy kanalov, a poctu regresorov |
| | 467 | for(int window_size = max_window_size-1;window_size < max_window_size;window_size++) |
| | 468 | { |
| | 469 | models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
| | 470 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
| | 471 | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
| | 472 | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
| | 473 | } |
| | 474 | |
| | 475 | //set<pair<int,int>> empty_list; |
| | 476 | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
| | 477 | } |
| | 478 | |
| | 479 | mat result_lognc; |
| | 480 | // mat result_preds; |
| | 481 | |
| | 482 | ofstream myfilew; |
| | 483 | char rfstring[150]; |
| | 484 | strcpy(rfstring,folder_string); |
| | 485 | strcat(rfstring,results_folder); |
| | 486 | strcat(rfstring,commodity); |
| | 487 | strcat(rfstring,files[contract]); |
| | 488 | |
| | 489 | /* |
| | 490 | char predstring[150]; |
| | 491 | strcpy(predstring,folder_string); |
| | 492 | strcat(predstring,results_folder); |
| | 493 | strcat(predstring,commodity); |
| | 494 | strcat(predstring,"PRED"); |
| | 495 | strcat(predstring,files[contract]); |
| | 496 | */ |
| | 497 | |
| | 498 | for(int time = max_model_order;time<data_matrix.cols();time++) //time<data_matrix.cols() |
| | 499 | { |
| | 500 | cout << "Steps: " << time << endl; |
| 452 | | //pocet stlpcov data_matrix je pocet casovych krokov |
| 453 | | vec cur_res_lognc; |
| 454 | | // vec preds; |
| 455 | | vector<string> nazvy; |
| 456 | | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
| 457 | | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
| 458 | | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
| 459 | | |
| 460 | | //cout << "Updated." << endl; |
| 461 | | //if (time = max_model_order) nazvy.push_back(models.model_ref]);// ako by som mohol dostat nazov modelu? |
| 462 | | |
| 463 | | if((*model_ref)->my_rarx!=NULL) //vklada normalizacni faktor do cur_res_lognc |
| 464 | | { |
| 465 | | //cout << "Maxlik vertex:" << (*model_ref)->my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
| 466 | | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_rarx->posterior->_ll()); |
| 467 | | } |
| 468 | | else |
| 469 | | { |
| 470 | | double cur_lognc = (*model_ref)->my_arx->posterior().lognc(); |
| 471 | | double cur_ll = cur_lognc-(*model_ref)->previous_lognc; |
| | 540 | //pocet stlpcov data_matrix je pocet casovych krokov |
| | 541 | double cur_loglikelihood; |
| | 542 | // vec preds; |
| | 543 | int prev_samples_nr; |
| | 544 | bool previous_switch = true; |
| | 545 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
| | 546 | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
| | 547 | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
| | 548 | |
| | 549 | //cout << "Updated." << endl; |
| | 550 | |
| | 551 | if((*model_ref)->my_rarx!=NULL) //vklada normalizacni faktor do cur_res_lognc |
| | 552 | { |
| | 553 | //cout << "Maxlik vertex(robust):" << (*model_ref)->my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
| | 554 | cur_loglikelihood = (*model_ref)->my_rarx->posterior->_ll(); |
| | 555 | } |
| | 556 | else |
| | 557 | { |
| | 558 | //cout << "Mean(classical):" << (*model_ref)->my_arx->posterior().mean() << endl; |
| | 559 | double cur_lognc = (*model_ref)->my_arx->posterior().lognc(); |
| | 560 | cur_loglikelihood = cur_lognc-(*model_ref)->previous_lognc; |
| | 561 | |
| | 562 | (*model_ref)->previous_lognc = cur_lognc; |
| | 563 | } |
| 543 | | */ |
| 544 | | |
| 545 | | if(time>prediction_time) |
| 546 | | { |
| 547 | | // PREDICTIONS |
| 548 | | pair<vec,vec> predictions = (*model_ref)->predict(5000,time,&LapRNG); |
| 549 | | |
| 550 | | /* |
| 551 | | cout << predictions.first << endl << endl << predictions.second << endl << "*************************************" ; |
| 552 | | pause(5); |
| 553 | | */ |
| 554 | | |
| 555 | | double optimalInvestment = newtonRaphson(0,0.00001,predictions.second,utility_order); |
| 556 | | |
| 557 | | /* |
| 558 | | vec utilityValues; |
| 559 | | for(int j=0;j<1000;j++) |
| 560 | | { |
| 561 | | utilityValues.ins(utilityValues.length(),valueCRRAUtility(-0.5+0.001*j, predictions.second, utility_order)); |
| 562 | | }*/ |
| 563 | | |
| 564 | | double avg_prediction = (predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size())); |
| 565 | | |
| 566 | | (*model_ref)->predictions.ins((*model_ref)->predictions.size(),avg_prediction); |
| | 622 | */ |
| | 623 | |
| | 624 | if(time>prediction_time) |
| | 625 | { |
| | 626 | int samples_nr; |
| | 627 | if(previous_switch) |
| | 628 | { |
| | 629 | samples_nr = 10000; |
| | 630 | } |
| | 631 | else |
| | 632 | { |
| | 633 | samples_nr = prev_samples_nr; |
| | 634 | } |
| | 635 | |
| | 636 | |
| | 637 | // PREDICTIONS |
| | 638 | pair<vec,vec> predictions = (*model_ref)->predict(samples_nr,time,&LapRNG); |
| | 639 | |
| | 640 | /* |
| | 641 | myfilew.open(predstring,ios::app); |
| | 642 | for(int i=0;i<10000;i++) |
| | 643 | { |
| | 644 | if(i<predictions.second.size()) |
| | 645 | { |
| | 646 | myfilew << predictions.second.get(i) << ","; |
| | 647 | } |
| | 648 | else |
| | 649 | { |
| | 650 | myfilew << ","; |
| | 651 | } |
| | 652 | } |
| | 653 | myfilew << endl; |
| | 654 | myfilew.close(); |
| | 655 | */ |
| | 656 | |
| | 657 | if(previous_switch) |
| | 658 | { |
| | 659 | prev_samples_nr = predictions.second.size(); |
| | 660 | samples_nr = prev_samples_nr; |
| | 661 | } |
| | 662 | |
| | 663 | previous_switch = !previous_switch; |
| | 664 | |
| | 665 | double optimalInvestment = newtonRaphson(0,0.00001,predictions.second,utility_order); |
| | 666 | |
| | 667 | if(abs(optimalInvestment)>max_investment) |
| | 668 | { |
| | 669 | optimalInvestment = max_investment*sign(optimalInvestment); |
| | 670 | } |
| | 671 | |
| | 672 | |
| | 673 | /* |
| | 674 | vec utilityValues; |
| | 675 | for(int j=0;j<1000;j++) |
| | 676 | { |
| | 677 | utilityValues.ins(utilityValues.length(),valueCRRAUtility(-0.5+0.001*j, predictions.second, utility_order)); |
| | 678 | }*/ |
| | 679 | |
| | 680 | double avg_prediction = (predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size())); |
| | 681 | |
| | 682 | (*model_ref)->predictions.ins((*model_ref)->predictions.size(),avg_prediction); |
| 580 | | } |
| 581 | | |
| 582 | | |
| 583 | | //preds.ins(0,data_matrix.get(0,time+1)); |
| 584 | | } |
| 585 | | |
| 586 | | if(time>prediction_time) |
| 587 | | { |
| 588 | | // REAL PRICE |
| 589 | | myfilew.open(fstring,ios::app); |
| 590 | | myfilew << data_matrix.get(0,time+1) << endl; |
| 591 | | myfilew.close(); |
| 592 | | } |
| 593 | | |
| 594 | | |
| 595 | | |
| 596 | | result_lognc.ins_col(result_lognc.cols(),cur_res_lognc); |
| 597 | | //result_preds.ins_col(result_preds.cols(),preds); |
| 598 | | |
| 599 | | // cout << "Updated." << endl; |
| 600 | | |
| 601 | | /* |
| 602 | | myfilew.open(fstring,ios::app); |
| 603 | | |
| 604 | | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
| 605 | | |
| 606 | | if(time == max_model_order) |
| 607 | | { |
| 608 | | for(int i = 0;i<cur_res_lognc.size();i++) |
| 609 | | { |
| 610 | | for(set<pair<int,int>>::iterator ar_ref = models[i]->ar_components.begin();ar_ref != models[i]->ar_components.end();ar_ref++) |
| 611 | | { |
| 612 | | myfilew << (*ar_ref).second << (*ar_ref).first; |
| 613 | | } |
| 614 | | |
| 615 | | myfilew << "."; |
| 616 | | |
| 617 | | if(models[i]->my_arx == NULL) |
| 618 | | { |
| 619 | | myfilew << "1"; |
| 620 | | } |
| 621 | | else |
| 622 | | { |
| 623 | | myfilew << "0"; |
| 624 | | } |
| 625 | | |
| 626 | | if(models[i]->has_constant) |
| 627 | | { |
| 628 | | myfilew << "1"; |
| 629 | | } |
| 630 | | else |
| 631 | | { |
| 632 | | myfilew << "0"; |
| 633 | | } |
| 634 | | |
| 635 | | myfilew << ","; |
| 636 | | } |
| 637 | | |
| 638 | | myfilew << endl; |
| 639 | | } |
| 640 | | |
| 641 | | |
| 642 | | for(int i = 0;i<cur_res_lognc.size();i++) |
| 643 | | { |
| 644 | | myfilew << cur_res_lognc[i] << ' ';//zmenil som ciarku ze medzeru |
| 645 | | } |
| 646 | | |
| 647 | | myfilew << endl; |
| 648 | | myfilew.close(); |
| 649 | | */ |
| 650 | | } |
| 651 | | |
| 652 | | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
| 653 | | // with maximization of logarithm of one-step ahead wealth. |
| 654 | | |
| 655 | | |
| 656 | | |
| 657 | | /* |
| 658 | | cout << "One experiment finished." << endl; |
| 659 | | |
| 660 | | ofstream myfile; |
| 661 | | myfile.open("c:\\robust_ar1.txt",ios::app); |
| 662 | | myfile << endl; |
| 663 | | myfile.close(); |
| 664 | | |
| 665 | | myfile.open("c:\\robust_ar2.txt",ios::app); |
| 666 | | myfile << endl; |
| 667 | | myfile.close();*/ |
| 668 | | |
| 669 | | |
| 670 | | //emlig* emlig1 = new emlig(emlig_size); |
| 671 | | |
| 672 | | //emlig1->step_me(0); |
| 673 | | //emlig* emlig2 = new emlig(emlig_size); |
| 674 | | |
| 675 | | /* |
| 676 | | emlig1->set_correction_factors(4); |
| 677 | | |
| 678 | | for(int j = 0;j<emlig1->correction_factors.size();j++) |
| 679 | | { |
| 680 | | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
| 681 | | { |
| 682 | | cout << j << " "; |
| 683 | | |
| 684 | | for(int i=0;i<(*vec_ref).size();i++) |
| 685 | | { |
| 686 | | cout << (*vec_ref)[i]; |
| 687 | | } |
| 688 | | |
| 689 | | cout << endl; |
| 690 | | } |
| 691 | | }*/ |
| 692 | | |
| 693 | | /* |
| 694 | | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
| 695 | | |
| 696 | | emlig1->add_condition(condition5); |
| 697 | | //emlig1->step_me(0); |
| 698 | | |
| 699 | | |
| 700 | | vec condition1a = "-1.0 1.02 0.5"; |
| 701 | | //vec condition1b = "1.0 1.0 1.01"; |
| 702 | | emlig1->add_condition(condition1a); |
| 703 | | //emlig2->add_condition(condition1b); |
| 704 | | |
| 705 | | vec condition2a = "-0.3 1.7 1.5"; |
| 706 | | //vec condition2b = "-1.0 1.0 1.0"; |
| 707 | | emlig1->add_condition(condition2a); |
| 708 | | //emlig2->add_condition(condition2b); |
| 709 | | |
| 710 | | vec condition3a = "0.5 -1.01 1.0"; |
| 711 | | //vec condition3b = "0.5 -1.01 1.0"; |
| 712 | | |
| 713 | | emlig1->add_condition(condition3a); |
| 714 | | //emlig2->add_condition(condition3b); |
| 715 | | |
| 716 | | vec condition4a = "-0.5 -1.0 1.0"; |
| 717 | | //vec condition4b = "-0.5 -1.0 1.0"; |
| 718 | | |
| 719 | | emlig1->add_condition(condition4a); |
| 720 | | //cout << "************************************************" << endl; |
| 721 | | //emlig2->add_condition(condition4b); |
| 722 | | //cout << "************************************************" << endl; |
| 723 | | |
| 724 | | //cout << emlig1->minimal_vertex->get_coordinates(); |
| 725 | | |
| 726 | | //emlig1->remove_condition(condition3a); |
| 727 | | //emlig1->step_me(0); |
| 728 | | //emlig1->remove_condition(condition2a); |
| 729 | | //emlig1->remove_condition(condition1a); |
| 730 | | //emlig1->remove_condition(condition5); |
| 731 | | |
| 732 | | |
| 733 | | //emlig1->step_me(0); |
| 734 | | //emlig2->step_me(0); |
| 735 | | |
| 736 | | |
| 737 | | // DA SE POUZIT PRO VYPIS DO SOUBORU |
| 738 | | // emlig1->step_me(0); |
| 739 | | |
| 740 | | //emlig1->remove_condition(condition1); |
| 741 | | |
| 742 | | |
| 743 | | |
| 744 | | |
| 745 | | |
| 746 | | /* |
| 747 | | for(int i = 0;i<100;i++) |
| 748 | | { |
| 749 | | cout << endl << "Step:" << i << endl; |
| 750 | | |
| 751 | | double condition[emlig_size+1]; |
| 752 | | |
| 753 | | for(int k = 0;k<=emlig_size;k++) |
| 754 | | { |
| 755 | | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
| 756 | | } |
| 757 | | |
| 758 | | |
| 759 | | vec* condition_vec = new vec(condition,emlig_size+1); |
| 760 | | emlig1->add_condition(*condition_vec); |
| 761 | | |
| 762 | | /* |
| 763 | | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
| 764 | | { |
| 765 | | cout << ((toprow*)toprow_ref)->probability << endl; |
| 766 | | } |
| 767 | | */ |
| 768 | | /* |
| 769 | | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
| 770 | | |
| 771 | | /* |
| 772 | | if(i-emlig1->number_of_parameters >= 0) |
| 773 | | { |
| 774 | | pause(30); |
| 775 | | } |
| 776 | | */ |
| 777 | | |
| 778 | | // emlig1->step_me(i); |
| 779 | | |
| 780 | | /* |
| 781 | | vector<int> sizevector; |
| 782 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 783 | | { |
| 784 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 785 | | } |
| 786 | | */ |
| 787 | | //} |
| 788 | | |
| 789 | | |
| 790 | | |
| 791 | | |
| 792 | | /* |
| 793 | | emlig1->step_me(1); |
| 794 | | |
| 795 | | vec condition = "2.0 0.0 1.0"; |
| 796 | | |
| 797 | | emlig1->add_condition(condition); |
| 798 | | |
| 799 | | vector<int> sizevector; |
| 800 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 801 | | { |
| 802 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 803 | | } |
| 804 | | |
| 805 | | emlig1->step_me(2); |
| 806 | | |
| 807 | | condition = "2.0 1.0 0.0"; |
| 808 | | |
| 809 | | emlig1->add_condition(condition); |
| 810 | | |
| 811 | | sizevector.clear(); |
| 812 | | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
| 813 | | { |
| 814 | | sizevector.push_back(emlig1->statistic_rowsize(s)); |
| 815 | | } |
| 816 | | */ |
| | 705 | } |
| | 706 | } |
| | 707 | |
| | 708 | for(vector<model*>::reverse_iterator model_ref = models.rbegin();model_ref!=models.rend();model_ref++) |
| | 709 | { |
| | 710 | delete *model_ref; |
| | 711 | } |
| | 712 | } |