Changeset 1436 for applications/dual/vahala/kim
- Timestamp:
- 03/04/12 19:28:08 (13 years ago)
- Location:
- applications/dual/vahala/kim
- Files:
-
- 42 added
- 6 modified
Legend:
- Unmodified
- Added
- Removed
-
applications/dual/vahala/kim/assembDeriv.m
r1435 r1436 1 function [A_k, C_k, pre_k, A_l] = assembDeriv(ksi, iab, ksi0, Q, R, ref_ome )1 function [A_k, C_k, pre_k, A_l] = assembDeriv(ksi, iab, ksi0, Q, R, ref_ome, inddq) 2 2 a = 0.9898; 3 3 b = 0.0072; … … 6 6 e = 0.0149; 7 7 dt = 0.000125; 8 9 Rs = 0.28; 10 Ls = 0.003465; 11 psi = 0.1989; 12 B = 0; 13 kp = 1.5; 14 pp = 4.0; 15 J = 0.04; 16 Lq = 1.0*Ls; 17 Ld = 0.9*Ls; 18 kpp = kp*pp*pp; 19 kppj = kpp/J; 8 20 9 21 ome = ksi(1); … … 17 29 18 30 %puvodni matice derivaci 19 A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; 31 if(inddq == 0) 32 %stejne indukcnosti 33 A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; 34 else 35 %ruzne indukcnosti 36 A = [d, -dt*kppj*(psi*(ia*cos(the) + ib*sin(the)) + (Ld - Lq)*(ia*cos(the) + ib*sin(the))^2 - (Ld - Lq)*(ib*cos(the) - ia*sin(the))^2); dt, 1.0]; 37 end 20 38 C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; 21 39 … … 115 133 pre_k(1) = Pnew(1,1); 116 134 pre_k(2) = Pnew(1,2); 117 pre_k(3) = Pnew(2,2); 135 pre_k(3) = Pnew(2,2); 136 %max x(5) = pi^2/3 ... variance of uniform -pi,pi 137 if(pre_k(3) > pi^2/3) 138 pre_k(3) = pi^2/3; 139 end 118 140 end -
applications/dual/vahala/kim/basic_main.m
r1435 r1436 1 % main - hlavni skript 2 clear all; 3 % oznaceni: s ... system 4 % k ... kalman (EKF) 5 % l ... rizeni (LQR) 6 7 % KONSTANTY 8 T = 40000; %horizont 9 dt = 0.000125; %casovy krok 10 11 % Rs = 0.28; 12 % Ls = 0.003465; 13 % psipm = 0.1989; 14 % B = 0; 15 % kp = 1.5; 16 % pp = 4.0; 17 % J = 0.04; 18 19 % Lq = 1.05*Ls; 20 % Ld = 0.95*Ls; 21 22 a = 0.9898; 23 b = 0.0072; 24 c = 0.0361; 25 d = 1.0; 26 e = 0.0149; 27 28 Ls = 0.003465; 29 psipm = 0.1989; 30 31 % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; 32 ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 33 34 %kovariance EKF na stavu 35 % Q_k = diag([0.001, 0.00001]); 36 % R_k = diag([0.015, 0.015]); 37 Q_k = diag([0.01, 0.0001]); 38 R_k = diag([0.15, 0.15]); 39 40 %hodnoty sumu v systemu 41 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 42 nR = diag([0.0006, 0.0006]); 43 44 iter_l = 10;% pocet iteraci ve vypoctu rizeni 45 46 % B_l = zeros(3,2); 47 % B_l = zeros(2,2); 48 % B_l(1,1) = c; 49 % B_l(2,2) = c; 50 51 Q_l = diag([1 0 0]); 52 % % Q_l = diag([0 0 1 0 0]); 53 r = 0.01; 54 R_l = diag([r, r]); 55 56 % PROMENNE 57 x_s = zeros(4,T); %stav 58 y_s = zeros(2,T); %mereni 59 x_k = zeros(2,T); %odhad stavu 60 P_k = zeros(2); %kovariance stavu 61 u_l = zeros(2,T); %rizeni 62 % S_l = zeros(3); %jadro ztraty 63 S_l = zeros(2); 64 65 % POCATECNI HODNOTY 66 noise = 1; %prepinac sumu 67 % noise = 0; 68 69 theta0 = 1.5;%1.7; %pocatecni poloha 70 P0 = eye(2); %odhad pocatecni kovariance stavu (apriorni) 71 % ST = zeros(3); %koncova ztrata 72 ST = ones(3); 73 74 75 % INICIALIZACE 76 x_s(4,1) = theta0; 77 % x_s(3,1) = 5; 78 P_k = P0; 79 S_l = ST; 80 81 ref_ome = zeros(1, T); 82 for k = 1:T, 83 index = floor(k*dt); 84 if(index>0) 85 lower = ref_profile(index); 86 else 87 lower = 0; 88 end 89 if(index<T*dt) 90 upper = ref_profile(index+1); 91 else 92 upper = 0; 93 end 94 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 1 function [loss] = basic_main(T, ref_profile, theta0, simulator, graf, inddq) 2 % basic main - hlavni skript 3 % clear all; 4 % oznaceni: s ... system 5 % k ... kalman (EKF) 6 % l ... rizeni (LQR) 7 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9 %%%%%pouziti SIMULATORU 10 % simulator = 1; 11 % simulator = 0; 12 13 if((simulator == 1)||(simulator == 10)) 14 sim_param = pmsm_sim; 15 % sim_param(9) = 0; %vypne dead-time 16 pmsm_sim(sim_param); 95 17 end 96 % ref_ome = 0*ones(1, T); 97 98 % Derivace pro prvni EKF 99 ome = x_k(1,1); 100 the = x_k(2,1); 101 ia = y_s(1,1); 102 ib = y_s(2,1); 103 A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; 104 C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; 105 106 107 ri = 0.0001; 108 ai = (1-a*a)/c/c; 109 Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; 110 Li = a*c*Si/(c*c*Si+ri); 111 112 A_l = [d,0,0;dt,1,dt;0,0,1]; 113 % B_l = zeros(2); 114 % % A_l = [a 0 0 0 0; 0 a 0 0 0; 0 0 d 0 (d-1); 0 0 dt 1 dt; 0 0 0 0 1]; 115 % % B_l = zeros(5,2); 116 % % B_l(1:2,1:2) = [c 0;0 c]; 117 118 %PI vektorove 119 % kon_pi = 3.0; 120 % kon_ii = 0.00375; 121 % kon_pu = 20.0; 122 % kon_iu = 0.05; 123 % sum_iq = 0; 124 % sum_ud = 0; 125 % sum_uq = 0; 126 127 128 129 % HLAVNI SMYCKA 130 for t = 1:T-1, 131 % EKF 132 Pp = A*P_k*A' + Q_k; 133 S = C*Pp*C' + R_k; 134 K = Pp*C'/S; 135 P_k = Pp - K*C*Pp; 136 137 xp = zeros(2,1); 138 xp(1) = d*x_k(1,t) + e*(y_s(2,t)*cos(x_k(2,t)) - y_s(1,t)*sin(x_k(2,t))); 139 xp(2) = x_k(2,t) + dt*x_k(1,t); 140 yp = zeros(2,1); 141 yp(1) = a*y_s(1,t) + b*x_k(1,t)*sin(x_k(2,t)) + c*u_l(1,t); 142 yp(2) = a*y_s(2,t) - b*x_k(1,t)*cos(x_k(2,t)) + c*u_l(2,t); 143 144 x_k(:,t+1) = xp + K*(y_s(:,t) - yp); 145 146 %!!! 147 % tmp = x_k(:,t+1); 148 % x_k(:,t+1) = x_s(3:4,t); 149 150 % Derivace 151 ome = x_k(1,t+1); 152 the = x_k(2,t+1); 153 ia = y_s(1,t); 154 ib = y_s(2,t); 18 %%%%% 19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 20 21 % KONSTANTY 22 % T = 120000; %horizont 23 dt = 0.000125; %casovy krok 24 25 % Rs = 0.28; 26 % Ls = 0.003465; 27 % psipm = 0.1989; 28 % B = 0; 29 % kp = 1.5; 30 % pp = 4.0; 31 % J = 0.04; 32 33 % Lq = 1.05*Ls; 34 % Ld = 0.95*Ls; 35 36 a = 0.9898; 37 b = 0.0072; 38 c = 0.0361; 39 d = 1.0; 40 e = 0.0149; 41 42 Rs = 0.28; 43 Ls = 0.003465; 44 psi = 0.1989; 45 B = 0; 46 kp = 1.5; 47 pp = 4.0; 48 J = 0.04; 49 Lq = 1.0*Ls; 50 Ld = 0.9*Ls; 51 kpp = kp*pp*pp; 52 kppj = kpp/J; 53 54 % Ls = 0.003465; 55 % psipm = 0.1989; 56 57 % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; 58 % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 59 % ref_profile = [0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0]; 60 % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; 61 % ref_profile = [20, 20, 20, 50, 50, 50, -10, -10, -10, 0, 0, 0, 20, 20, 20]; 62 63 %kovariance EKF na stavu 64 % Q_k = diag([0.001, 0.00001]); 65 % R_k = diag([0.015, 0.015]); 66 Q_k = diag([0.01, 0.0001]); 67 R_k = diag([0.15, 0.15]); 68 69 %hodnoty sumu v systemu 70 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 71 nR = diag([0.0006, 0.0006]); 72 73 iter_l = 10;% pocet iteraci ve vypoctu rizeni 74 75 % B_l = zeros(3,2); 76 % B_l = zeros(2,2); 77 % B_l(1,1) = c; 78 % B_l(2,2) = c; 79 80 Q_l = diag([1 0 0]); 81 % % Q_l = diag([0 0 1 0 0]); 82 r = 0.01; 83 R_l = diag([r, r]); 84 85 % PROMENNE 86 x_s = zeros(4,T); %stav 87 y_s = zeros(2,T); %mereni 88 x_k = zeros(2,T); %odhad stavu 89 % P_k = zeros(2); %kovariance stavu 90 u_l = zeros(2,T); %rizeni 91 % S_l = zeros(3); %jadro ztraty 92 % S_l = zeros(2); 93 94 % POCATECNI HODNOTY 95 noise = 1; %prepinac sumu 96 % noise = 0; 97 98 % theta0 = 0; %pocatecni poloha odhadu (nejde pro stav kvuli simulatoru) 99 P0 = eye(2); %odhad pocatecni kovariance stavu (apriorni) 100 % ST = zeros(3); %koncova ztrata 101 ST = ones(3); 102 103 104 % INICIALIZACE 105 x_k(2,1) = theta0; 106 % x_s(3,1) = 5; 107 P_k = P0; 108 S_l = ST; 109 110 ref_ome = zeros(1, T); 111 for k = 1:T, 112 index = floor(k*dt); 113 if(index>0) 114 lower = ref_profile(index); 115 else 116 lower = 0; 117 end 118 if(index<T*dt) 119 upper = ref_profile(index+1); 120 else 121 upper = 0; 122 end 123 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 124 end 125 % ref_ome = 0*ones(1, T); 126 127 % Derivace pro prvni EKF 128 ome = x_k(1,1); 129 the = x_k(2,1); 130 ia = y_s(1,1); 131 ib = y_s(2,1); 155 132 A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; 156 133 C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; 134 135 136 ri = 0.0001; 137 ai = (1-a*a)/c/c; 138 Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; 139 Li = a*c*Si/(c*c*Si+ri); 140 141 A_l = [d,0,0;dt,1,dt;0,0,1]; 142 % B_l = zeros(2); 143 % % A_l = [a 0 0 0 0; 0 a 0 0 0; 0 0 d 0 (d-1); 0 0 dt 1 dt; 0 0 0 0 1]; 144 % % B_l = zeros(5,2); 145 % % B_l(1:2,1:2) = [c 0;0 c]; 146 147 %PI vektorove 148 % kon_pi = 3.0; 149 % kon_ii = 0.00375; 150 % kon_pu = 20.0; 151 % kon_iu = 0.05; 152 % sum_iq = 0; 153 % sum_ud = 0; 154 % sum_uq = 0; 155 156 157 158 % HLAVNI SMYCKA 159 for t = 1:T-1, 160 % EKF 161 Pp = A*P_k*A' + Q_k; 162 S = C*Pp*C' + R_k; 163 K = Pp*C'/S; 164 P_k = Pp - K*C*Pp; 165 166 xp = zeros(2,1); 167 xp(1) = d*x_k(1,t) + e*(y_s(2,t)*cos(x_k(2,t)) - y_s(1,t)*sin(x_k(2,t))); 168 xp(2) = x_k(2,t) + dt*x_k(1,t); 169 yp = zeros(2,1); 170 yp(1) = a*y_s(1,t) + b*x_k(1,t)*sin(x_k(2,t)) + c*u_l(1,t); 171 yp(2) = a*y_s(2,t) - b*x_k(1,t)*cos(x_k(2,t)) + c*u_l(2,t); 172 173 x_k(:,t+1) = xp + K*(y_s(:,t) - yp); 174 175 %!!! 176 % tmp = x_k(:,t+1); 177 % x_k(:,t+1) = x_s(3:4,t); 178 179 % Derivace 180 ome = x_k(1,t+1); 181 the = x_k(2,t+1); 182 ia = y_s(1,t); 183 ib = y_s(2,t); 184 if(inddq == 0) 185 %stejne indukcnosti 186 A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; 187 else 188 %ruzne indukcnosti 189 A = [d, -dt*kppj*(psi*(ia*cos(the) + ib*sin(the)) + (Ld - Lq)*(ia*cos(the) + ib*sin(the))^2 - (Ld - Lq)*(ib*cos(the) - ia*sin(the))^2); dt, 1.0]; 190 end 191 C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; 192 193 % id = ia*cos(the) + ib*sin(the); 194 % iq = ib*cos(the) - ia*sin(the); 195 196 % LQ 197 % phi = zeros(2,1); 198 % phi(1) = d*x_k(1,t+1) + e*(y_s(2,t)*cos(x_k(2,t+1)) - y_s(1,t)*sin(x_k(2,t+1))); 199 % phi(2) = x_k(2,t+1) + dt*x_k(1,t+1); 200 % y = x_k(:,t+1); 201 % y(1) = y(1) - ref_ome(t); 202 % A_l = zeros(3); 203 % A_l(1:2,1:2) = A; 204 % A_l = A; 205 % A_l(1,2) = 0; 206 % A_l(1:2,3) = phi - A*y; 207 % A_l(3,3) = 1; 208 B_l = [-e*sin(the), e*cos(the); 0, 0; 0,0]; 209 y = [(ome-ref_ome(t)); the; ref_ome(t)]; 210 % % y = [ia; ib; (ome-ref_ome(t)); the; ref_ome(t)]; 211 % % A_l(1, 3) = b*sin(the); 212 % % A_l(2, 3) = -b*cos(the); 213 % % A_l(1, 5) = b*sin(the); 214 % % A_l(2, 5) = -b*cos(the); 215 % % A_l(3, 1) = -e*sin(the); 216 % % A_l(3, 2) = e*cos(the); 217 for i = 1:iter_l 218 S_l = A_l'*(S_l - S_l*B_l/(B_l'*S_l*B_l + R_l)*B_l'*S_l)*A_l + Q_l; 219 end 220 L = (B_l'*S_l*B_l + R_l)\B_l'*S_l*A_l; 221 % yref = -L*y;%referencni proudy 222 % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c - Li*y_s(:,t); 223 224 % sum_iq = sum_iq + ref_ome(t) - ome; 225 % ref_iq = kon_pi*(ref_ome(t) - ome) + kon_ii*sum_iq; 226 % sum_ud = sum_ud - id; 227 % u_d = kon_pu*(-id) + kon_iu*sum_ud; 228 % sum_uq = sum_uq + ref_iq - iq; 229 % u_q = kon_pu*(ref_iq - iq) + kon_iu*sum_uq; 230 % u_d = u_d - Ls*ome*ref_iq; 231 % u_q = u_q + psipm*ome; 232 % 233 % u_l(1, t+1) = u_d*cos(the) - u_q*sin(the); 234 % u_l(2, t+1) = u_q*cos(the) + u_d*sin(the); 235 % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c*[sin(the);-cos(the)] - Li*y_s(:,t); 236 237 % u_l(:,t+1) = yref/c - Li*y_s(:,t); 238 % u_l(:,t+1) = -L*[y;1]; 239 u_l(:,t+1) = -L*y + b/c*ome*[-sin(the);cos(the)] - Li*y_s(:,t); 240 if u_l(1,t+1) > 100 241 u_l(1,t+1) = 100; 242 elseif u_l(1,t+1) < -100 243 u_l(1,t+1) = -100; 244 end 245 if u_l(2,t+1) > 100 246 u_l(2,t+1) = 100; 247 elseif u_l(2,t+1) < -100 248 u_l(2,t+1) = -100; 249 end 250 % u_l(:,t+1) = 0; 251 % Vyvoj systemu 252 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise, simulator); 253 254 255 %!!! 256 % x_k(:,t+1) = tmp; 257 end 258 259 if(graf == 1) 260 %vykresleni 261 cas = (1:T)*dt; 262 figure; 263 subplot(2,1,1); 264 plot(cas,x_k(1,:),cas,x_s(3,:),cas,ref_ome); 265 title('Prubeh otacek v case'); 266 xlabel('cas [s]'); 267 ylabel('otacky [rad/s]'); 268 legend('odhad','skutecne','pozadovane'); 269 subplot(2,1,2); 270 plot(cas,atan2(sin(x_k(2,:)),cos(x_k(2,:))),cas,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); 271 title('Prubeh polohy v case'); 272 xlabel('cas [s]'); 273 ylabel('poloha [rad]'); 274 275 figure; 276 plot(cas,x_s(3,:)-ref_ome); 277 title('Prubeh chyby (skutecne - pozadovane otacky v case)'); 278 xlabel('cas [s]'); 279 ylabel('chyba [rad/s]'); 280 end 157 281 158 % id = ia*cos(the) + ib*sin(the); 159 % iq = ib*cos(the) - ia*sin(the); 160 161 % LQ 162 % phi = zeros(2,1); 163 % phi(1) = d*x_k(1,t+1) + e*(y_s(2,t)*cos(x_k(2,t+1)) - y_s(1,t)*sin(x_k(2,t+1))); 164 % phi(2) = x_k(2,t+1) + dt*x_k(1,t+1); 165 % y = x_k(:,t+1); 166 % y(1) = y(1) - ref_ome(t); 167 % A_l = zeros(3); 168 % A_l(1:2,1:2) = A; 169 % A_l = A; 170 % A_l(1,2) = 0; 171 % A_l(1:2,3) = phi - A*y; 172 % A_l(3,3) = 1; 173 B_l = [-e*sin(the), e*cos(the); 0, 0; 0,0]; 174 y = [(ome-ref_ome(t)); the; ref_ome(t)]; 175 % % y = [ia; ib; (ome-ref_ome(t)); the; ref_ome(t)]; 176 % % A_l(1, 3) = b*sin(the); 177 % % A_l(2, 3) = -b*cos(the); 178 % % A_l(1, 5) = b*sin(the); 179 % % A_l(2, 5) = -b*cos(the); 180 % % A_l(3, 1) = -e*sin(the); 181 % % A_l(3, 2) = e*cos(the); 182 for i = 1:iter_l 183 S_l = A_l'*(S_l - S_l*B_l/(B_l'*S_l*B_l + R_l)*B_l'*S_l)*A_l + Q_l; 184 end 185 L = (B_l'*S_l*B_l + R_l)\B_l'*S_l*A_l; 186 % yref = -L*y;%referencni proudy 187 % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c - Li*y_s(:,t); 188 189 % sum_iq = sum_iq + ref_ome(t) - ome; 190 % ref_iq = kon_pi*(ref_ome(t) - ome) + kon_ii*sum_iq; 191 % sum_ud = sum_ud - id; 192 % u_d = kon_pu*(-id) + kon_iu*sum_ud; 193 % sum_uq = sum_uq + ref_iq - iq; 194 % u_q = kon_pu*(ref_iq - iq) + kon_iu*sum_uq; 195 % u_d = u_d - Ls*ome*ref_iq; 196 % u_q = u_q + psipm*ome; 197 % 198 % u_l(1, t+1) = u_d*cos(the) - u_q*sin(the); 199 % u_l(2, t+1) = u_q*cos(the) + u_d*sin(the); 200 % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c*[sin(the);-cos(the)] - Li*y_s(:,t); 201 202 % u_l(:,t+1) = yref/c - Li*y_s(:,t); 203 % u_l(:,t+1) = -L*[y;1]; 204 u_l(:,t+1) = -L*y + b/c*ome*[-sin(the);cos(the)] - Li*y_s(:,t); 205 if u_l(1,t+1) > 100 206 u_l(1,t+1) = 100; 207 elseif u_l(1,t+1) < -100 208 u_l(1,t+1) = -100; 209 end 210 if u_l(2,t+1) > 100 211 u_l(2,t+1) = 100; 212 elseif u_l(2,t+1) < -100 213 u_l(2,t+1) = -100; 214 end 215 % u_l(:,t+1) = 0; 216 % Vyvoj systemu 217 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise); 218 219 %!!! 220 % x_k(:,t+1) = tmp; 282 loss = sum((x_s(3,:)-ref_ome).^2); 221 283 end 222 223 figure;224 subplot(2,1,1);225 plot(1:T,x_k(1,:),1:T,x_s(3,:),1:T,ref_ome);226 subplot(2,1,2);227 plot(1:T,atan2(sin(x_k(2,:)),cos(x_k(2,:))),1:T,atan2(sin(x_s(4,:)),cos(x_s(4,:))));228 -
applications/dual/vahala/kim/evolSys.m
r1435 r1436 1 function [x_s, y_s] = evolSys(x, u, nQ, nR, noise) 2 dt = 0.000125; 3 a = 0.9898; 4 b = 0.0072; 5 c = 0.0361; 6 d = 1.0; 7 e = 0.0149; 1 function [x_s, y_s] = evolSys(x, u, nQ, nR, noise, simulator) 2 if ((simulator == 1)||(simulator == 10))%simulator 3 ua = 3*u(1); 4 ub = 3*u(2); 5 %kompenzace ubytku 6 if(simulator == 10) 7 ua = ua + comps(x(1)); 8 ub = ub + comps(x(2)); 9 end 10 11 [tx, ty] = pmsm_sim(ua, ub, 0); 12 13 x_s = tx(1:4); %isa, isb, omega, theta 14 y_s = ty(3:4); %isa, isb 15 16 elseif (simulator == 0)%matlab - stejne indukcnosti 17 dt = 0.000125; 18 a = 0.9898; 19 b = 0.0072; 20 c = 0.0361; 21 d = 1.0; 22 e = 0.0149; 8 23 9 x_s(1) = a*x(1) + b*x(3)*sin(x(4)) + c*u(1) + noise*sqrt(nQ(1,1))*randn();10 x_s(2) = a*x(2) - b*x(3)*cos(x(4)) + c*u(2) + noise*sqrt(nQ(2,2))*randn();11 x_s(3) = d*x(3) + e*(x(2)*cos(x(4)) - x(1)*sin(x(4))) + noise*sqrt(nQ(3,3))*randn();12 x_s(4) = x(4) + dt*x(3) + noise*sqrt(nQ(4,4))*randn();24 x_s(1) = a*x(1) + b*x(3)*sin(x(4)) + c*u(1) + noise*sqrt(nQ(1,1))*randn(); 25 x_s(2) = a*x(2) - b*x(3)*cos(x(4)) + c*u(2) + noise*sqrt(nQ(2,2))*randn(); 26 x_s(3) = d*x(3) + e*(x(2)*cos(x(4)) - x(1)*sin(x(4))) + noise*sqrt(nQ(3,3))*randn(); 27 x_s(4) = x(4) + dt*x(3) + noise*sqrt(nQ(4,4))*randn(); 13 28 14 y_s(1) = x_s(1) + noise*sqrt(nR(1,1))*randn(); 15 y_s(2) = x_s(2) + noise*sqrt(nR(2,2))*randn(); 16 end 29 y_s(1) = x_s(1) + noise*sqrt(nR(1,1))*randn(); 30 y_s(2) = x_s(2) + noise*sqrt(nR(2,2))*randn(); 31 32 else %matlab - ruzne indukcnosti 33 Rs = 0.28; 34 Ls = 0.003465; 35 psipm = 0.1989; 36 B = 0; 37 kp = 1.5; 38 pp = 4.0; 39 J = 0.04; 40 dt = 0.000125; 41 Lq = 1.0*Ls; 42 Ld = 0.9*Ls; 43 44 id = x(1)*cos(x(4)) + x(2)*sin(x(4)); 45 iq = x(2)*cos(x(4)) - x(1)*sin(x(4)); 46 om = x(3); 47 th = x(4); 48 ud = u(1)*cos(x(4)) + u(2)*sin(x(4)); 49 uq = u(2)*cos(x(4)) - u(1)*sin(x(4)); 50 51 idp = (1 - Rs*dt/Ld)*id + Lq*dt/Ld*om*iq + dt/Ld*ud; 52 iqp = (1 - Rs*dt/Lq)*iq - psipm*dt/Lq*om - Ld*dt/Lq*om*id + dt/Lq*uq; 53 omp = (1 - B*dt/J)*om + kp*pp*pp*dt/J*((Ld-Lq)*id*iq + psipm*iq); 54 thp = th + dt*om; 55 56 x_s(1) = idp*cos(thp) - iqp*sin(thp) + noise*sqrt(nQ(1,1))*randn(); 57 x_s(2) = iqp*cos(thp) + idp*sin(thp) + noise*sqrt(nQ(2,2))*randn(); 58 x_s(3) = omp + noise*sqrt(nQ(3,3))*randn(); 59 x_s(4) = thp + noise*sqrt(nQ(4,4))*randn(); 60 61 y_s(1) = x_s(1) + noise*sqrt(nR(1,1))*randn(); 62 y_s(2) = x_s(2) + noise*sqrt(nR(2,2))*randn(); 63 64 end 65 end -
applications/dual/vahala/kim/extKF.m
r1435 r1436 23 23 24 24 x_k = xp + K*(y - yp); 25 26 %max x(5) = pi^2/3 ... variance of uniform -pi,pi 27 % if(x_k(5) > pi^2/3) 28 % x_k(5) = pi^2/3; 29 % end 25 30 end -
applications/dual/vahala/kim/main.m
r1435 r1436 1 % main - hlavni skript 2 clear all; 3 % oznaceni: s ... system 4 % k ... kalman (EKF) 5 % l ... rizeni (LQR) 6 7 % KONSTANTY 8 T = 40000; %horizont 9 dt = 0.000125; %casovy krok 10 11 % Rs = 0.28; 12 % Ls = 0.003465; 13 % psipm = 0.1989; 14 % B = 0; 15 % kp = 1.5; 16 % pp = 4.0; 17 % J = 0.04; 18 19 % Lq = 1.05*Ls; 20 % Ld = 0.95*Ls; 21 22 a = 0.9898; 23 b = 0.0072; 24 c = 0.0361; 25 d = 1.0; 26 e = 0.0149; 27 28 % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; 29 ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 30 31 %kovariance EKF na stavu, ktery vytvari hyperstav 32 % Q_k = diag([0.001, 0.00001]); 33 % R_k = diag([0.015, 0.015]); 34 Q_k = diag([0.01, 0.0001]); 35 R_k = diag([0.15, 0.15]); 36 37 %kovariance EKF na hyperstavu 38 % Qh_k = diag([0.001, 0.00001, 0.00001, 0.00001, 0.00001]); 39 % Rh_k = diag([0.015, 0.015]); 40 Qh_k = diag([0.01, 0.0001, 0.1, 0.1, 0.1]); 41 Rh_k = diag([0.15, 0.15]); 42 43 %hodnoty sumu v systemu 44 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 45 nR = diag([0.0006, 0.0006]); 46 47 iter_l = 10;% pocet iteraci ve vypoctu rizeni 48 49 B_l = zeros(6,2); 50 % B_l(1,1) = c; 51 % B_l(2,2) = c; 52 53 % o t Po Pot Pt 54 Q_l = diag([1 0 300 0.0 300 0]); 55 % Q_l = diag([1 0 0 0 0 0]); 56 r = 0.0001; 57 R_l = diag([r, r]); 58 59 60 61 % PROMENNE 62 x_s = zeros(4,T); %stav 63 y_s = zeros(2,T); %mereni 64 x_k = zeros(5,T); %odhad hyperstavu 65 P_k = zeros(5); %kovariance hyperstavu 66 u_l = zeros(2,T); %rizeni 67 S_l = zeros(6); %jadro ztraty 68 pre_k = zeros(3,1); %predikce stavu 69 70 71 % POCATECNI HODNOTY 72 noise = 1; %prepinac sumu 73 % noise = 0; 74 75 theta0 = 1.5;%1.7; %pocatecni poloha 76 Ps0 = eye(2); %odhad pocatecni kovariance stavu (apriorni) 77 Pk0 = eye(5); %pocatecni kovariance hyperstavu 78 ST = zeros(6); %koncova ztrata 79 80 81 % INICIALIZACE 82 x_s(4,1) = theta0; 83 x_k(3,1) = Ps0(1,1); 84 x_k(4,1) = Ps0(1,2); 85 x_k(5,1) = Ps0(2,2); 86 P_k = Pk0; 87 S_l = ST; 88 89 ref_ome = zeros(1, T); 90 for k = 1:T, 91 index = floor(k*dt); 92 if(index>0) 93 lower = ref_profile(index); 94 else 95 lower = 0; 96 end 97 if(index<T*dt) 98 upper = ref_profile(index+1); 99 else 100 upper = 0; 101 end 102 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 1 function [loss] = main(T, ref_profile, theta0, simulator, graf, inddq) 2 % main - hlavni skript 3 % clear all; 4 % oznaceni: s ... system 5 % k ... kalman (EKF) 6 % l ... rizeni (LQR) 7 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9 %%%%%pouziti SIMULATORU 10 % simulator = 1; 11 % simulator = 0; 12 13 if((simulator == 1)||(simulator == 10)) 14 sim_param = pmsm_sim; 15 % sim_param(9) = 0; %vypne dead-time 16 pmsm_sim(sim_param); 103 17 end 104 105 % Derivace pro prvni EKF 106 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,1), y_s(:,1), x_k(:,1), Q_k, R_k, 0); 107 108 ri = 0.0001; 109 ai = (1-a*a)/c/c; 110 Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; 111 Li = a*c*Si/(c*c*Si+ri); 112 113 Pia = 1; 114 Pib = 1; 115 qi = 0.1; 116 ri = 0.05; 117 y = [0;0]; 118 119 % HLAVNI SMYCKA 120 for t = 1:T-1, 121 % EKF 122 Pp = Pia*(a*a+b*b+b*b*cos(x_k(2,t))^2*(x_k(1,t)^2-1))+qi; 123 Pia = Pp-Pp*Pp/(Pp+ri); 124 y(1) = (1-Pp/(Pp+ri))*(a*y(1)+b*x_k(1,t)*sin(x_k(2,t))+c*u_l(1,t)) + Pp/(Pp+ri)*y_s(1,t); 125 Pp = Pib*(a*a+b*b+b*b*sin(x_k(2,t))^2*(x_k(1,t)^2-1))+qi; 126 Pib = Pp-Pp*Pp/(Pp+ri); 127 y(2) = (1-Pp/(Pp+ri))*(a*y(2)-b*x_k(1,t)*cos(x_k(2,t))+c*u_l(2,t)) + Pp/(Pp+ri)*y_s(2,t); 128 [x_k(:,t+1), P_k] = extKF(x_k(:,t), y, u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 129 % [x_k(:,t+1), P_k] = extKF(x_k(:,t), y_s(:,t), u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 130 131 % Q_l(1,1) = 1/(1+exp(-2*x_k(1,t+1)+6))+0.1; 132 Q_l(3,3) = x_k(5,t+1)^5*50; 133 Q_l(5,5) = Q_l(3,3); 134 135 % Derivace 136 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,t+1), y_s(:,t), x_k(:,t+1), Q_k, R_k, ref_ome(t)); 137 138 % LQ 139 B_l(1,1:2) = [-e*sin(x_k(2,t+1)), e*cos(x_k(2,t+1))]; 140 % [u_l(:,t+1), S_l] = ctrlLQ(x_k(:,t+1), ref_ome(t), A_l, B_l, S_l, Q_l, R_l, iter_l); 141 [u_l(:,t+1), S_l] = ctrlLQ(x_k(:,t+1), ref_ome(t), A_l, B_l, ST, Q_l, R_l, iter_l); 142 u_l(:,t+1) = b/c*x_k(1,t+1)*[-sin(x_k(2,t+1));cos(x_k(2,t+1))] + u_l(:,t+1) - Li*y_s(:,t); 143 if u_l(1,t+1) > 100 144 u_l(1,t+1) = 100; 145 elseif u_l(1,t+1) < -100 146 u_l(1,t+1) = -100; 18 %%%%% 19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 20 21 % KONSTANTY 22 % T = 120000; %horizont 23 dt = 0.000125; %casovy krok 24 25 % Rs = 0.28; 26 % Ls = 0.003465; 27 % psipm = 0.1989; 28 % B = 0; 29 % kp = 1.5; 30 % pp = 4.0; 31 % J = 0.04; 32 33 % Lq = 1.05*Ls; 34 % Ld = 0.95*Ls; 35 36 a = 0.9898; 37 b = 0.0072; 38 c = 0.0361; 39 % d = 1.0; 40 e = 0.0149; 41 42 % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; 43 % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 44 % ref_profile = [0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0]; 45 % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; 46 % ref_profile = [20, 20, 20, 50, 50, 50, -10, -10, -10, 0, 0, 0, 20, 20, 20]; 47 48 %kovariance EKF na stavu, ktery vytvari hyperstav 49 % Q_k = diag([0.001, 0.00001]); 50 % R_k = diag([0.015, 0.015]); 51 Q_k = diag([0.01, 0.0001]); 52 R_k = diag([0.15, 0.15]); 53 54 %kovariance EKF na hyperstavu 55 % Qh_k = diag([0.001, 0.00001, 0.00001, 0.00001, 0.00001]); 56 % Rh_k = diag([0.015, 0.015]); 57 Qh_k = diag([0.01, 0.0001, 0.1, 0.1, 0.1]); 58 Rh_k = diag([0.15, 0.15]); 59 60 %hodnoty sumu v systemu 61 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 62 nR = diag([0.0006, 0.0006]); 63 64 iter_l = 10;% pocet iteraci ve vypoctu rizeni 65 66 B_l = zeros(6,2); 67 % B_l(1,1) = c; 68 % B_l(2,2) = c; 69 70 % o t Po Pot Pt 71 Q_l = diag([1 0 1 0 0 0]); % spravne z teoretickeho hlediska 72 % Q_l = diag([1 0 1 0 1 0]); 73 % Q_l = diag([1 0 0 0 0 0]); 74 r = 0.0001; 75 R_l = diag([r, r]); 76 77 78 79 % PROMENNE 80 x_s = zeros(4,T); %stav 81 y_s = zeros(2,T); %mereni 82 x_k = zeros(5,T); %odhad hyperstavu 83 % P_k = zeros(5); %kovariance hyperstavu 84 u_l = zeros(2,T); %rizeni 85 % S_l = zeros(6); %jadro ztraty 86 % pre_k = zeros(3,1); %predikce stavu 87 88 89 % POCATECNI HODNOTY 90 noise = 1; %prepinac sumu 91 % noise = 0; 92 93 % theta0 = 0; %pocatecni poloha odhadu (nejde pro stav kvuli simulatoru) 94 Ps0 = eye(2); %odhad pocatecni kovariance stavu (apriorni) 95 Pk0 = eye(5); %pocatecni kovariance hyperstavu 96 ST = zeros(6); %koncova ztrata 97 98 99 % INICIALIZACE 100 x_k(2,1) = theta0; 101 x_k(3,1) = Ps0(1,1); 102 x_k(4,1) = Ps0(1,2); 103 x_k(5,1) = Ps0(2,2); 104 P_k = Pk0; 105 S_l = ST; 106 107 ref_ome = zeros(1, T); 108 for k = 1:T, 109 index = floor(k*dt); 110 if(index>0) 111 lower = ref_profile(index); 112 else 113 lower = 0; 114 end 115 if(index<T*dt) 116 upper = ref_profile(index+1); 117 else 118 upper = 0; 119 end 120 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 121 end 122 123 % Derivace pro prvni EKF 124 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,1), y_s(:,1), x_k(:,1), Q_k, R_k, 0, inddq); 125 126 ri = 0.0001; 127 ai = (1-a*a)/c/c; 128 Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; 129 Li = a*c*Si/(c*c*Si+ri); 130 131 Pia = 1; 132 Pib = 1; 133 qi = 0.1; 134 ri = 0.05; 135 y = [0;0]; 136 137 % HLAVNI SMYCKA 138 for t = 1:T-1, 139 % EKF 140 Pp = Pia*(a*a+b*b+b*b*cos(x_k(2,t))^2*(x_k(1,t)^2-1))+qi; 141 Pia = Pp-Pp*Pp/(Pp+ri); 142 y(1) = (1-Pp/(Pp+ri))*(a*y(1)+b*x_k(1,t)*sin(x_k(2,t))+c*u_l(1,t)) + Pp/(Pp+ri)*y_s(1,t); 143 Pp = Pib*(a*a+b*b+b*b*sin(x_k(2,t))^2*(x_k(1,t)^2-1))+qi; 144 Pib = Pp-Pp*Pp/(Pp+ri); 145 y(2) = (1-Pp/(Pp+ri))*(a*y(2)-b*x_k(1,t)*cos(x_k(2,t))+c*u_l(2,t)) + Pp/(Pp+ri)*y_s(2,t); 146 [x_k(:,t+1), P_k] = extKF(x_k(:,t), y, u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 147 % [x_k(:,t+1), P_k] = extKF(x_k(:,t), y_s(:,t), u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 148 149 % Q_l(1,1) = 1/(1+exp(-2*x_k(1,t+1)+6))+0.1; 150 % Q_l(3,3) = x_k(5,t+1)^5*50; 151 % Q_l(5,5) = Q_l(3,3); 152 153 % Derivace 154 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,t+1), y_s(:,t), x_k(:,t+1), Q_k, R_k, ref_ome(t), inddq); 155 156 % LQ 157 B_l(1,1:2) = [-e*sin(x_k(2,t+1)), e*cos(x_k(2,t+1))]; 158 % [u_l(:,t+1), S_l] = ctrlLQ(x_k(:,t+1), ref_ome(t), A_l, B_l, S_l, Q_l, R_l, iter_l); 159 [u_l(:,t+1), S_l] = ctrlLQ(x_k(:,t+1), ref_ome(t), A_l, B_l, ST, Q_l, R_l, iter_l); 160 u_l(:,t+1) = b/c*x_k(1,t+1)*[-sin(x_k(2,t+1));cos(x_k(2,t+1))] + u_l(:,t+1) - Li*y_s(:,t); 161 162 if u_l(1,t+1) > 100 163 u_l(1,t+1) = 100; 164 elseif u_l(1,t+1) < -100 165 u_l(1,t+1) = -100; 166 end 167 if u_l(2,t+1) > 100 168 u_l(2,t+1) = 100; 169 elseif u_l(2,t+1) < -100 170 u_l(2,t+1) = -100; 171 end 172 173 % Vyvoj systemu 174 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise, simulator); 147 175 end 148 if u_l(2,t+1) > 100 149 u_l(2,t+1) = 100; 150 elseif u_l(2,t+1) < -100 151 u_l(2,t+1) = -100; 176 177 if(graf == 1) 178 %vykresleni 179 cas = (1:T)*dt; 180 figure; 181 subplot(2,1,1); 182 plot(cas,x_k(1,:),cas,x_s(3,:),cas,ref_ome); 183 title('Prubeh otacek v case'); 184 xlabel('cas [s]'); 185 ylabel('otacky [rad/s]'); 186 legend('odhad','skutecne','pozadovane'); 187 subplot(2,1,2); 188 plot(cas,atan2(sin(x_k(2,:)),cos(x_k(2,:))),cas,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); 189 title('Prubeh polohy v case'); 190 xlabel('cas [s]'); 191 ylabel('poloha [rad]'); 192 193 figure; 194 plot(cas,x_s(3,:)-ref_ome); 195 title('Prubeh chyby (skutecne - pozadovane otacky v case)'); 196 xlabel('cas [s]'); 197 ylabel('chyba [rad/s]'); 152 198 end 153 199 154 % Vyvoj systemu 155 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise); 200 loss = sum((x_s(3,:)-ref_ome).^2); 156 201 end 157 158 figure;159 subplot(2,1,1);160 plot(1:T,x_k(1,:),1:T,x_s(3,:),1:T,ref_ome);161 subplot(2,1,2);162 plot(1:T,atan2(sin(x_k(2,:)),cos(x_k(2,:))),1:T,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); -
applications/dual/vahala/kim/main_lq4.m
r1435 r1436 1 % main - hlavni skript 2 clear all; 3 % oznaceni: s ... system 4 % k ... kalman (EKF) 5 % l ... rizeni (LQR) 1 function [loss] = main_lq4(T, ref_profile, theta0, simulator, graf, inddq) 2 % main - hlavni skript >>>>>>>PLNY STAV<<<<<<< 3 % clear all; 4 % oznaceni: s ... system 5 % k ... kalman (EKF) 6 % l ... rizeni (LQR) 6 7 7 % KONSTANTY 8 T = 40000; %horizont 9 dt = 0.000125; %casovy krok 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9 %%%%%pouziti SIMULATORU 10 % simulator = 1; 11 % simulator = 0; 10 12 11 % Rs = 0.28; 12 % Ls = 0.003465;13 % psipm = 0.1989; 14 % B = 0; 15 % kp = 1.5; 16 % pp = 4.0; 17 % J = 0.04; 13 if((simulator == 1)||(simulator == 10)) 14 sim_param = pmsm_sim; 15 % sim_param(9) = 0; %vypne dead-time 16 pmsm_sim(sim_param); 17 end 18 %%%%% 19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 18 20 19 % Lq = 1.05*Ls; 20 % Ld = 0.95*Ls; 21 % KONSTANTY 22 % T = 120000; %horizont 23 % T = 40000; 24 dt = 0.000125; %casovy krok 21 25 22 a = 0.9898; 23 b = 0.0072; 24 c = 0.0361; 25 d = 1.0; 26 e = 0.0149; 26 % Rs = 0.28; 27 % Ls = 0.003465; 28 % psipm = 0.1989; 29 % B = 0; 30 % kp = 1.5; 31 % pp = 4.0; 32 % J = 0.04; 27 33 28 ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200;29 % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];34 % Lq = 1.05*Ls; 35 % Ld = 0.95*Ls; 30 36 31 % kovariance EKF na stavu, ktery vytvari hyperstav32 % Q_k = diag([0.001, 0.00001]);33 % R_k = diag([0.015, 0.015]);34 Q_k = diag([0.01, 0.0001]);35 R_k = diag([0.15, 0.15]);37 % a = 0.9898; 38 % b = 0.0072; 39 c = 0.0361; 40 % d = 1.0; 41 % e = 0.0149; 36 42 37 %kovariance EKF na hyperstavu 38 % Qh_k = diag([0.001, 0.00001, 0.00001, 0.00001, 0.00001]);39 % Rh_k = diag([0.015, 0.015]);40 Qh_k = diag([0.01, 0.0001, 10.1, 10.1, 10.1]);41 Rh_k = diag([0.15, 0.15]);43 % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; 44 % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 45 % ref_profile = [0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0]; 46 % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; 47 % ref_profile = [20, 20, 20, 50, 50, 50, -10, -10, -10, 0, 0, 0, 20, 20, 20]; 42 48 43 %hodnoty sumu v systemu 44 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 45 nR = diag([0.0006, 0.0006]); 49 %kovariance EKF na stavu, ktery vytvari hyperstav 50 % Q_k = diag([0.001, 0.00001]); 51 % R_k = diag([0.015, 0.015]); 52 Q_k = diag([0.1, 0.1, 0.01, 0.0001]); 53 R_k = diag([0.05, 0.05]); 46 54 47 iter_l = 10;% pocet iteraci ve vypoctu rizeni 55 %kovariance EKF na hyperstavu 56 % Qh_k = diag([0.001, 0.00001, 0.00001, 0.00001, 0.00001]); 57 % Rh_k = diag([0.015, 0.015]); 58 Qh_k = 0.1*eye(14); 59 Qh_k(1:4,1:4) = diag([0.1, 0.1, 0.01, 0.0001]); 60 Rh_k = diag([0.05, 0.05]); 48 61 49 B_l = zeros(6,2); 50 % B_l(1,1) = c;51 % B_l(2,2) = c;62 %hodnoty sumu v systemu 63 nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); 64 nR = diag([0.0006, 0.0006]); 52 65 53 % o t Po Pot Pt 54 Q_l = diag([10 0 0.1 0.00001 0.1 0]); 55 % Q_l = diag([1 0 0 0 0 0]); 56 r = 0.0001; 57 R_l = diag([r, r]); 66 iter_l = 10;% pocet iteraci ve vypoctu rizeni 67 68 B_l = zeros(15,2); 69 B_l(1,1) = c; 70 B_l(2,2) = c; 71 72 Q_l = zeros(15); 73 Q_l(3,3) = 1; %ome 74 Q_l(10,10) = 1; %Var ome 75 % Q_l(14,14) = 1; %Var the 76 % o t Po Pot Pt 77 % Q_l = diag([1 0 1 0 0 0]); % asi spravne z teoretickeho hlediska 78 % Q_l = diag([1 0 1 0 1 0]); 79 % Q_l = diag([1 0 0 0 0 0]); 80 r = 0.0001; 81 R_l = diag([r, r]); 58 82 59 83 60 84 61 % PROMENNE62 x_s = zeros(4,T); %stav63 y_s = zeros(2,T); %mereni64 x_k = zeros(5,T); %odhad hyperstavu65 P_k = zeros(5); %kovariance hyperstavu66 u_l = zeros(2,T); %rizeni67 S_l = zeros(6); %jadro ztraty68 pre_k = zeros(3,1); %predikce stavu85 % PROMENNE 86 x_s = zeros(4,T); %stav 87 y_s = zeros(2,T); %mereni 88 x_k = zeros(14,T); %odhad hyperstavu 89 % P_k = zeros(14); %kovariance hyperstavu 90 u_l = zeros(2,T); %rizeni 91 % S_l = zeros(15); %jadro ztraty 92 % pre_k = zeros(10,1); %predikce stavu 69 93 70 94 71 % POCATECNI HODNOTY72 noise = 1; %prepinac sumu73 % noise = 0;95 % POCATECNI HODNOTY 96 noise = 1; %prepinac sumu 97 % noise = 0; 74 98 75 theta0 =1.5;%1.7; %pocatecni poloha76 Ps0 = eye(2); %odhad pocatecni kovariance stavu (apriorni)77 Pk0 = eye(5); %pocatecni kovariance hyperstavu78 ST = zeros(6); %koncova ztrata99 % theta0 = 0;%1.5;%1.7; %pocatecni poloha 100 % Ps0 = eye(4); %odhad pocatecni kovariance stavu (apriorni) 101 Pk0 = eye(14); %pocatecni kovariance hyperstavu 102 ST = eye(15); %koncova ztrata 79 103 80 104 81 % INICIALIZACE 82 x_s(4,1) = theta0; 83 x_k(3,1) = Ps0(1,1); 84 x_k(4,1) = Ps0(1,2); 85 x_k(5,1) = Ps0(2,2); 86 P_k = Pk0; 87 S_l = ST; 105 % INICIALIZACE 106 x_k(4,1) = theta0; 88 107 89 ref_ome = zeros(1, T); 90 for k = 1:T, 91 index = floor(k*dt); 92 if(index>0) 93 lower = ref_profile(index); 94 else 95 lower = 0; 96 end 97 if(index<T*dt) 98 upper = ref_profile(index+1); 99 else 100 upper = 0; 101 end 102 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 108 %Ps0 = eye 109 x_k(5,1) = 1; 110 x_k(7,1) = 1; 111 x_k(11,1) = 1; 112 x_k(14,1) = 1; 113 114 P_k = Pk0; 115 S_l = ST; 116 117 ref_ome = zeros(1, T); 118 for k = 1:T, 119 index = floor(k*dt); 120 if(index>0) 121 lower = ref_profile(index); 122 else 123 lower = 0; 124 end 125 if(index<T*dt) 126 upper = ref_profile(index+1); 127 else 128 upper = 0; 129 end 130 ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); 131 end 132 133 % Derivace pro prvni EKF 134 [A_k, C_k, pre_k, A_l] = assembDeriv4(x_k(:,1), u_l(:,1), x_k(:,1), Q_k, R_k, 0, inddq); 135 136 % HLAVNI SMYCKA 137 for t = 1:T-1, 138 % EKF 139 [x_k(:,t+1), P_k] = extKF4(x_k(:,t), y_s(:,t), u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 140 % x_k(1:4,t+1) = x_s(:,t); %cidlo 141 142 % Derivace 143 [A_k, C_k, pre_k, A_l] = assembDeriv4(x_k(:,t+1), u_l(:,t), x_k(:,t+1), Q_k, R_k, ref_ome(t), inddq); 144 145 % LQ 146 %!!! upraveno na QR verzi - tj. parametry jsou odmocniny 147 [u_l(:,t+1), S_l] = ctrlLQ4(x_k(:,t+1), ref_ome(t), A_l, B_l, sqrtm(ST), Q_l, sqrtm(R_l), iter_l); 148 149 if u_l(1,t+1) > 100 150 u_l(1,t+1) = 100; 151 elseif u_l(1,t+1) < -100 152 u_l(1,t+1) = -100; 153 end 154 if u_l(2,t+1) > 100 155 u_l(2,t+1) = 100; 156 elseif u_l(2,t+1) < -100 157 u_l(2,t+1) = -100; 158 end 159 160 % Vyvoj systemu 161 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise, simulator); 103 162 end 104 163 105 % Derivace pro prvni EKF 106 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,1), y_s(:,1), x_k(:,1), Q_k, R_k, 0); 107 108 ri = 0.0001; 109 ai = (1-a*a)/c/c; 110 Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; 111 Li = a*c*Si/(c*c*Si+ri); 112 113 % HLAVNI SMYCKA 114 for t = 1:T-1, 115 % EKF 116 [x_k(:,t+1), P_k] = extKF(x_k(:,t), y_s(:,t), u_l(:,t), pre_k, A_k, C_k, P_k, Qh_k, Rh_k); 117 118 % Derivace 119 [A_k, C_k, pre_k, A_l] = assembDeriv(x_k(:,t+1), y_s(:,t), x_k(:,t+1), Q_k, R_k, ref_ome(t)); 120 121 % LQ 122 B_l(1,1:2) = [-e*sin(x_k(2,t+1)), e*cos(x_k(2,t+1))]; 123 [u_l(:,t+1), S_l] = ctrlLQ(x_k(:,t+1), ref_ome(t), A_l, B_l, S_l, Q_l, R_l, iter_l); 124 u_l(:,t+1) = b/c*x_k(1,t+1)*[-sin(x_k(2,t+1));cos(x_k(2,t+1))] + u_l(:,t+1) - Li*y_s(:,t); 125 if u_l(1,t+1) > 100 126 u_l(1,t+1) = 100; 127 elseif u_l(1,t+1) < -100 128 u_l(1,t+1) = -100; 129 end 130 if u_l(2,t+1) > 100 131 u_l(2,t+1) = 100; 132 elseif u_l(2,t+1) < -100 133 u_l(2,t+1) = -100; 164 if(graf == 1) 165 %vykresleni 166 cas = (1:T)*dt; 167 figure; 168 subplot(2,1,1); 169 plot(cas,x_k(3,:),cas,x_s(3,:),cas,ref_ome); 170 title('Prubeh otacek v case'); 171 xlabel('cas [s]'); 172 ylabel('otacky [rad/s]'); 173 legend('odhad','skutecne','pozadovane'); 174 subplot(2,1,2); 175 plot(cas,atan2(sin(x_k(4,:)),cos(x_k(4,:))),cas,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); 176 title('Prubeh polohy v case'); 177 xlabel('cas [s]'); 178 ylabel('poloha [rad]'); 179 180 figure; 181 plot(cas,x_s(3,:)-ref_ome); 182 title('Prubeh chyby (skutecne - pozadovane otacky v case)'); 183 xlabel('cas [s]'); 184 ylabel('chyba [rad/s]'); 134 185 end 135 186 136 % Vyvoj systemu 137 [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise); 187 loss = sum((x_s(3,:)-ref_ome).^2); 138 188 end 139 140 figure;141 subplot(2,1,1);142 plot(1:T,x_k(1,:),1:T,x_s(3,:),1:T,ref_ome);143 subplot(2,1,2);144 plot(1:T,atan2(sin(x_k(2,:)),cos(x_k(2,:))),1:T,atan2(sin(x_s(4,:)),cos(x_s(4,:))));